Matched Filter CNR, Diversity and Signal Detectivity for Deterministic and Random Coherent Ladar Signals

Philip Gatt, Don Jacob Presented by Dr. Sammy W. Henderson Lockheed Martin Coherent Technologies 135 South Taylor Avenue Louisville, CO 80027

15th Biannual Coherent Laser Radar Conference Toulouse, France June 23, 2009

Funded Under Lockheed Martin IRAD

Introduction

We develop theoretical expressions for coherent ladar signal:

- **♦ Wideband and matched filter CNR**
- **Speckle coherence time**
- Intrinsic diversity (a measure of speckle noise mitigation, *M* = Speckle SNR)
- **Spectrum models valid for arbitrary integration times**
	- \Rightarrow long or short relative to the coherence time
- Relationship between spectrum height and matched filter CNR (CNRn) is developed
- **Example 2 Relationship to signal detectivity**

◆ Theoretical predictions are supported by Monte-Carlo simulation experiment results

Coherent Ladar CNR

$$
\overline{CNR}_{w} = \frac{\eta_r \operatorname{Pr}}{h \vee B}
$$

$$
= \frac{\eta_r \operatorname{Pr} T}{h \vee B T}
$$

$$
= \frac{\eta_r E_r}{h \vee B T}
$$

$$
= \frac{m_r}{B T}
$$

For signal integration over times short compared to the speckle coherence time

$$
B = \frac{1}{T} \quad and
$$

$$
CNR_n = m_r
$$

Coherent Ladar CNR

For arbitrary integration times, T

$$
CNR_w = \frac{\eta_r \Pr}{h \nu B}
$$

$$
= \frac{m_r}{BT}
$$

Optimal matched filter Bandwidth related to characteristic speckle time

$$
B = \frac{1}{\tau_s} \quad and
$$

\n
$$
CNR_n = \frac{\tau_s}{T} m_r
$$

\n
$$
= \frac{m_r}{M}
$$

\nfor $T > \tau_s$
\n
$$
= m_{rs}
$$

What are detailed descriptions of τ_s and M?

Long Duration (*T* **>>** τ**^s) Signal Diversity and Speckle Coherence Time**

◆ Diversity is defined as the speckle limited signal SNR or reciprocal normalized power variance

$$
M = \frac{E[P_s]^2}{var[P_s]} = SNR_{speckle}
$$

 \Diamond There are many definitions for coherence time.

 For very long integration times, *T*, the definition that leads to the diversity, *M*, converging to $M = T/\tau_s$ is what we call the "speckle coherence time"

 $M \approx T / \tau_s$ for $T >> \tau_s$

◆ Goodman shows, Ch 6 Statistical Optics, that this coherence time is given by

$$
\tau_{s} = \int_{-\infty}^{\infty} |\Gamma(\tau)|^{2} d\tau / \Gamma(0)^{2} = \int_{-\infty}^{\infty} |\gamma(\tau)|^{2} d\tau
$$

- \triangle This is a measure of the width of the normalized signal autocorrelation function
- **Exercise Parseval's Theorem leads to an expression** in terms of the signal spectrum (not shown)

◆ For a Gaussian autocorrelation function

 $\tau_s = \sqrt{\pi/2\tau_c} = 1.25\tau_c$

• Where τ_c is the exp[-1] coherence time

Matched Filter CNR and Integrated Speckle Diversity for Arbitrary Duration Signals

◆ For arbitrary duration signals, the matched filter CNR can be generalized

- **Exercise Coherent photoelectrons contribute to CNRn**
- \triangle Incoherent photoelectrons contribute to diversity
- \div Total #electrons = CNRn and diversity product

$$
CNR_n = \frac{m_r}{M}
$$

$$
m_r = M CNR_n
$$

For arbitrary duration signals, a general expression for the diversity of the temporally integrated coherent signal power is given by [Goodman Ch. 6]

 $=\frac{1}{T}\int \Lambda(t/T)|\gamma(\tau)|^2 d\tau$ ∞ −∞ $\tau^{-1} = \frac{1}{\pi} \left[\Lambda(t/T) |\gamma(\tau)|^2 d\right]$ *T* $M^{-1} = \frac{1}{\pi} \int_{0}^{\infty} \Lambda(t/T) |\gamma(\tau)|^2 d\tau$ $\Lambda(t)$ is the triangle function

 γ (t) is the normalized autocorrelation function

 For long integration times, the triangle function can be approximated as 1 and the integral converges to the speckle coherence time (see previous chart), leading to

 $M \rightarrow T/\tau_s$; for $T >> \tau_s$

For a Gaussian signal spectrum, this becomes

$$
M^{-1} = \frac{\text{erf}(\sqrt{\pi}\alpha)}{\alpha} - \frac{1}{\pi\alpha^2} \left(1 - \exp(-\pi\alpha^2)\right)
$$

- \cdot where $\alpha = T/\tau_{s}$
- \bullet For small $\alpha, M \Rightarrow 1$
- \bullet For Large α, $M \Rightarrow \alpha = \overline{I}/\tau_s$
- when $\alpha = 1$, $M = 1.4636$

Spectral Questions to Consider

What is the spectral model as a function of the integration time relative to the coherence time.

← How is the matched filter CNR related to the ratio of the spectral peak to the noise floor?

- **EXA Coherent CW signal: CNRn**
- Coherent Gaussian pulse: √2 CNRn

Long duration random signal with Gaussian autocorrelation/spectrum: √2 CNRn

Fully Coherent CW Signal: Short Duration (*T* **<<** τ**^s) Signal Spectral Model**

◆ FFT is a matched filter for a rectangular windowed sine wave

 \triangle Peak of FFT output should be $E_s/N_{\text{oe}} = \text{CNR}_{\text{n}}$

EXECUALE: Because it is the matched filter

◆ Signal Spectrum is a sinc function

 $\left| S_s(f) = CNR_n \text{ sinc}^2((f - f_c)T) \right|$ $\left| \text{ sinc}(x) = \sin(\pi x) / (\pi x) \right|$

◆ So with noise the final model is

$$
S_{sn}(f) = (No/2)(1 + CNR_n) \text{sinc}^2((f - f_c)T)
$$

◆ The peak spectral height above the unit normalized NSD is precisely equal to the matched filter CNR, CNRn

Arbitrary Duration Spectral Model

An arbitrary duration signal is the product of a rectangular window with an infinite duration signal.

 $s_T(t) = w(t)s(t)$

◆ For single spectral realizations, a multiply in time domain implies

- \bullet Fourier transforms convolve $S_T(f) = W(f) * S(f)$
- and spectrum, $S_{ST}(f) = |S_T(f)|^2$

◆ For ensemble average spectra, a multiply in time domain implies

- Power spectra convolve $\overline{S_{sT}(f)} = S_w(f)^*S_s(f)$
	- See Goodman's Gaussian moment theorem

$$
S_{sn}(f) = (No/2) \left(1 + \frac{S_{sinc}(f) * S_s(f)}{\int S_{sinc}(f) df} \right)
$$

- \Rightarrow Signal Spectrum convolved with a unit area sinc².
- \Rightarrow Unit area sinc² normalization ensures noise PSD remains constant with dwell time variations
- \Rightarrow For a Gaussian signal spectrum (see backup charts)

$$
S_{s}(f) = \sqrt{2}CNR_{n} \exp\left(\frac{(f - fc)^{2}}{2\delta f^{2}}\right)
$$

 $\overline{}$ J

 \setminus

 $\big)$

Monte Carlo Simulation Experimental Results for Arbitrary Integration Times Agree with Theory

◆ 10,000 Spectral Avg Monte Carlo Simulation

◆ Results agree with theory for arbitrary integration time

Signal Detectivity

← Detectivity relates to sensor range performance

← Detectivity is defined as the ratio of the peak signal spectral height above the noise, to the rms fluctuations in the noise. Assume unit normalized NSD.

- Spectral peak above noise is *k* CNRn
	- \Rightarrow where *k* is a constant close to 1
- Noise rms is 1/√*N*
	- \Rightarrow gamma distributed

← Consequently, the detectivity or Figure of Merit is given by

 $FOM = k\sqrt{NCNR_n}$

◆ This FOM can be utilized to characterize the anomaly probability for a peak-detecting estimator algorithm

\triangle So for 2 < FOM < 3, PrA \sim 50% depending on number of noise bins

Summary

◆ Matched Filter CNR

Coherent photons build up CNRn M Incoherent photons build up diversity

← Diversity

Eully coherent CW signal

 $M=1$

◆ Partially coherent CW signal

 $=\frac{1}{T}\int \Lambda(t/T)|\gamma(\tau)|^2 d\tau$ ∞ −∞ $\tau^{-1} = \frac{1}{\pi} \left[\Lambda(t/T) |\gamma(\tau)|^2 d\right]$ *T* $M^{-1} = \frac{1}{\pi} \left[\Lambda(t/T) |\gamma(\tau)|^2 \right]$

◆ Speckle Coherence Time

 $\tau_{s} = \int |\gamma(\tau)|^{2} d\tau$ ∞ −∞ $\int_{\mathcal{S}} = \int_{\mathcal{S}} |\gamma(\tau)|^2 d\tau$

◆ General Spectrum Model

$$
S_{sn}(f) = (No/2) \left(1 + \frac{S_{sinc}(f) * S_s(f)}{\int S_{sinc}(f) df} \right)
$$

- ◆ Peak above the normalized noise floor
	- \div Sp = 1.0 CNRn for fully coherent signals
	- Sp ~ 1.2 CNRn for *T*/ts = 1.0
	- \div Sp = 1.414 CNRn for infinite duration incoherent signals

◆ Signal Detectivity

 $FOM = Sp\sqrt{N} \sim CNR_n\sqrt{N}$

◆ Coherent Receiver Sensitivity / Pulse \Leftrightarrow ~ (1 coherent photon/ η_r) / \sqrt{N}