

Aerosol Direct radiative effects from extreme fire events in Australia, California and Siberia occurring in 2019-2020.

Thomas Vescovini, Pierre Nabat, Marc Mallet, Fabien Solmon CNRM, 11/05/2023

Feux de biomasse et changement climatique

Feux de biomasse en Australie (Déc 2019)

Nasa.gov (2019)

- Californie : intensité et de l'occurrence des feux de biomasse, +140% entre 1973-2012 (Buchholz et al. 2022)
- Feux extrêmes en Sibérie et Australie
- Feux de biomasse produisent des aérosols carbonés -> effet absorbant du rayonnement solaire (≠ sulfatés/nitrés)
- 6 à 8 gigatonnes de CO2 émis par ces feux en 2019 (43 gigatonnes anthropiques)
- RF 2019-2020 équivalent à une éruption volcanique de taille moyenne
- Influence du changement climatique sur les feux et rétroactions

Intrusions stratosphériques des aérosols de feux

Feux australiens (image visible MODIS)

Ohneiser et al. 2023

- Influence sur la composition stratosphérique à l'échelle hémisphérique

→ AOD des panache = 2/3 du total AOD dans la strato (feux californiens en Europe centrale (Baars et al., 2019)
(Bond et al., 2013; Yu et al., 2019; Ohneiser et al., 2022)

- Par pyro-convection

(Fromm and Servranckx, 2003; Peterson et al., 2018; Rodriguez et al., 2020) → self-lofting (Khaykin et al. 2020 ; Ohneiser et al. 2020, 2022 ; Hirsch and Koren 2021)

- Effets sur le bilan radiatif et le climat

 \rightarrow +4,2K en theta localement sur 50km, 30min (Campagne aerienne feux Californiens) (Mardi et al., 2018)

(Das et al., 2021; Yu et al., 2021; Stocker et al., 2021; Heinold et al., 2022; Rieger et al., 2021; Sellitto et al., 2022)

Objectifs de l'étude

Nasa.gov (2019)

Nasa.gov (2020)

2019-2020 : deux années de feux extrêmes (Australie, Californie, Sibérie)

=> Quelles propriétés pour les aérosols issus de ces feux ? (absorption, distribution verticale, etc.)

- => Comment les représenter dans un modèle de climat ?
- => Quels effets sur le bilan radiatif et le climat ?

Outil de modélisation : ARPEGE-Climat

Modèle de climat global (ARPEGE V6.4.1, 50km, 91 niveaux)

Aérosols : schéma interactif TACTIC (Michou et al. 2020, Drugé et al. 2022)

5/17

Emission de feux dans ARPEGE-Climat

Profils d'émissions des feux dans ARPEGE

¢

METEO

RÉPUBLIQUE

FRANCAISE

Égalité Fraternite

Données d'évaluation du modèle

Jeux de données :

	Туре	Resolution spatiale	Variables
MODIS-aqua	Obs satellite	1 km	AOD
CAMSRA	Réanalyses	80 km	AOD et mixing ratio
MERRA-2	Réanalyses	50 km	Coefficient d'extinction
CALIOP	Obs satellite	30-60m vertical 333m horizontal	Coeffcient d'extinction
AERONET	Obs au sol	Station fixe	AOD et forçage radiatif

Transport des aérosols de feux Californiens

AOD 550nm (moyenne septembre 2020)

Ø

METEO

RÉPUBLIQUE FRANCAISE

Liberté Égalité Fraternite

Distribution verticale des aérosols de feux

RÉPUBLIQUE

FRANCAISE

 Effet radiatif visible sur le taux d'échauffement

Forçage radiatif direct BrC TOA (W.m⁻²) Moyenne septembre 2020

All-sky

Clear-sky

- Forçage radiatif négatif au sommet de l'atmosphère dû aux feux de biomasse
- Près des sources en moyenne en Californie : -5 W/m²
- Peu de différences entre les trois simulations
- Quelques zones de forçage radiatif positif (Pacifique, Atlantique), uniquement en allsky => lié à l'albedo des nuages

AOD 550nm (moyenne Janvier 2020)

Distribution verticale des aérosols de feux

RÉPUBLIQUE

FRANCAISE

Égalité

AOD 01/20 over South Pacific Ocean (DomsPyroPlusDays)

Forçage radiatif direct BrC TOA (W.m⁻²) Moyenne Janvier 2020

27.5*5

45*5

62.5°S

80'S

27.5°S

45°S

62.5*5

80*5

45*5

62.5*S

80°S

- Forçage radiatif négatif au sommet de l'atmosphère dû aux feux de biomasse
- Près des sources en moyenne en Australie : -5 W/m²
- Peu de différences entre les trois simulations
- Forçage positif sur le Pacifique, uniquement en allsky => lié à l'albedo des nuages

Feux et effets radiatifs en Sibérie

AOD 550nm et RF ToA (moyenne Août 2019)

- Transport des aérosols de feux à l'échelle continentale

- Bonne reproduction du transport des feux sur le continent par ARPEGE (vs MODIS et MERRA-2)
- Diminution de l'AOD avec la pyro-convection (PYROC_EXT)
- Forçage radiatif au ToA : Négatif près des sources -4.5 W/m² Positif sur océan (nuages et glace de mer)

Conclusions et perspectives

AOD :

- Patterns spatiaux et temporels bien reproduits par ARPEGE-climat sur les 3 régions

Distribution verticale :

- Pyroconvection indispensable pour reproduire les intrusions stratosphériques d'aérosols de feux

=> PYROC_EXT meilleure simulation

Forçage radiatif direct au ToA :

- Négatif près des sources ~5 W/m²

- Positif dans le transport au dessus des nuages bas (Atlantique, Pacifique) et de la glace de mer (Arctique)

Perspectives :

- Étude des effets sur le climat