Light-absorbing aerosol sources and brown carbon aging in northern France

Presented by:

Alejandra VELAZQUEZ GARCIA³

Joël F. DE BRITO¹, Suzanne CRUMEYROLLE², Aude BOURIN¹, Isabelle CHIAPELLO², Véronique RIFFAULT¹

Laboratories:

¹Centre Energie et Environnement (CERI EE), IMT Nord Europe ²Laboratoire d'Optique Atmosphérique (LOA), CNRS UMR 8518 University of Lille ³CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

10th May 2023

ATOLL platform

Long-term observations: chemical & optical properties

ATOLL (ATmospheric Observation in liLLe) 50.6111 °N, 3.1404 °E, 70 m a.s.l.

The North of France suffers from significant particulate pollution events

- Heavily populated area
- High influence of anthropogenic sources
- Frequently polluted continental plumes arriving to the site

Instrumentation

Instrumentation

Light-absorbing aerosol sources

ATOLL (2016 – 2020)

Sandradewi et al. 2008

Light-absorbing aerosol sources

ATOLL (2016 – 2020)

Local vs transported? → % Sectors ?

Sandradewi et al. 2008

 $\label{eq:INTERPLAY} \textbf{ } \rightarrow \textbf{ combining iN-siTu obsERvations hysPLit And emissions-inventorY}$

INTERPLAY \rightarrow combining iN-siTu obsERvations hysPLit And emissions-inventorY

INTERPLAY \rightarrow combining iN-siTu obsERvations hysPLit And emissions-inventorY

INTERPLAY \rightarrow combining iN-siTu obsERvations hysPLit And emissions-inventorY

INTERPLAY vs Aethalometer

INTERPLAY mimics the BC observed by the aethalometer

 \rightarrow We can calculate the contribution to BC level at ATOLL by regions & sectors

Spatial contribution to BC level in ATOLL

7

Spatial contribution to BC level in ATOLL

- ATOLL is ~60 km apart from the main port (Calais)

7

Brown carbon (BrC)

What do we know of absorbing aerosols?

Wavelength dependent:

- **BC** from UV to infrared
- BrC mostly UV

(Bond & Bergstrom 2006, Laskin et al. 2015, Saleh et al. 2020)

Brown carbon (BrC)

What do we know of absorbing aerosols?

Wavelength dependent:

BC - from UV to infrared **BrC** - mostly UV

Atmospheric aging influences BrC_{abs} optical properties

- BrC formation (SOA)
- BrC consumption

Transport time from source region (days, hours...?)

BrC formation/consumption time : Atmospheric observations → ~1day Laboratory experiments → hours

(Bond & Bergstrom 2006, Laskin et al. 2015, Saleh et al. 2020)

BrC absorption_{470 nm}

AE33, Aeroso d.o.o.

Transport time from source region (Hours)

Wintertime BrC aging

Contribution to **BC mass** INTERPLAY

Velazquez-Garcia et al. to be submitted soon

Wintertime BrC aging

BC traffic aged

2. After 24hrs of aging the BrC consumption is efficient

Velazquez-Garcia et al. to be submitted soon

Conclusions

- A new tool was developed (INTERPLAY) to study the BC footprint at the site and able to mimic in-situ observations
- By applying INTERPLAY the spatial and sectoral contributions to BC level at the ATOLL platform were retrieved
 - Origins of BC levels at ATOLL: UK, Paris, BENELUX area, western Germany
 - Three main sectors contributing to BC levels: traffic, shipping & residential (mostly during winter)
- Absorption associated to BrC from residential heating during wintertime decreases 24 hrs after emission

Perspectives

Study particulate organic nitrates to investigate the formation of secondary BrC using the ACSM and the aethalometer data

- Evaluation of the effect of aging on BrC to validate AAE used for the source apportionment method by combining high-time resolution observations with auxiliary data and tools
- Prospects for widespread use; applicability to other chemical species and/or in situ measurements.

Thank you Do you have any questions?

alejandra.velazquez-garcia@meteo.fr

Optimization of INTERPLAY

Integration with in situ observations...?

1 hr \rightarrow r² = 0.165 n=14191

Optimization of INTERPLAY

		а	b	а	а	а	b	b	С			d						
										Without PBL criteria + Rain >1mm + Interpolation of BT of 10 min						Without Interpolation o		
	r ² is comparing with in situ observations9	Without PBL criteria	Without rain criteria	Height of BT (PBL+500)	Height of BT (PBL+2000m)	Height of BT (PBL+3000m)	Rain (>1mm)	Rain (>0.5mm)	Interpolation BT (10min)	Lille vector (360°)	Lille vector (270°)	Lille vector (180°)	Lille vector (90°)	Lille vector (60°)	Lille vector (30°)	BC footprint (0.2°x0.2°)	BC footprint (0.3°x0.3°)	foc (0.4
a	Without PBL criteria	1	r²=0.17 n=19932	NA	NA	NA	r ² =0.176 n=14191	r²=0.180 n=10903	NA	NA	NA	NA	NA	NA	NA	NA	NA	
b	Without rain criteria	r²=0.17 n=19932	1	r ² =0.151 BT=376000	r ² =0.167 BT=48000	r ² =0.168 BT=12000	NA	NA	r²=0.169 n=19932	NA	NA	NA	NA	NA	NA	NA	NA	
a	Height of BT (PBL+500m)	NA	r ² =0.151 BT=376000	1	NA	NA	r ² =0.153 BT=376000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
a 	Height of BT (PBL+2000m)	NA	r ² =0.167 BT=48000	NA	1		r ² =0.171 BT=48000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
a h	Height of BT (PBL+3000m)	NA	r ² =0.168 BT=12000	NA	NA	1	r ² =0.175 BT=12000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
b b	Rain (>1mm)	r²=0.177 n=14191	NA	r ² =0.153 BT=376000	r ² =0.171 BT=48000	r ² =0.175 BT=12000	1	NA	r ² =0.165 n=14191 + without PBL	r²=0.176 n=14191	r²=0.171 n=14191	r²=0.165 n=14191	r²=0.155 n=14191	r²=0.147 n=14191	r²=0.139 n=14191	r²=0.161 n=14191	r²=0.164 n=14191	r²= n=:
<u> </u>	Rain (>0.5mm)	r ² =0.180 n=10903	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	
C	Interpolation BT (10min)	NA	r²=0.169 n=19933	NA	NA	NA	r ² =0.165 n=14191	NA	1	r²=0.176 n=14191	r²=0.171 n=14191	r²=0.165 n=14191	r²=0.155 n=14191	r²=0.147 n=14191	r²=0.139 n=14191	r²=0.161 n=14191	r ² =0.164 n=14191	r²= n=
-							_		-					_				

At the end we have...Without PBL criteria + Rain >1mm + Interpolation of BT of 10 min + Lille vector (180°) + BC footprint square

Uncertainties associated to INTERPLAY

• An error associated with a given trajectory calculation \rightarrow **15 to 30% of the travel distance** (Stein et al. 2015)

Top-down global inventory downscaling national emission data at **fine resolution** (Monthly, 10 km – 10km, sectors)

- **Uncertainties** associated to emission inventories can remain in:
 - a) National total emission estimates:
 - Caused by model settings, reporting emission sources, gap filling approaches, assumptions or arbitrary choices
 - b) Spatial gridded methodologies:
 - Spatial discrepancies due to the methodological assumptions, choices of the weighting methodology

Case of studies:

- Denier van de Gon et al. 2015 (EC, OA EUCAARI 2005) → underestimation in wintertime by a factor of 5
- Fombetti et al. 2018 (6 Els) \rightarrow a factor of 1.5 2 regarding PM_{2.5} EDGARv 2016
 - ✓ Sectors: Residential ~ 38% (100% all), Traffic 15% (25% all)
 - \checkmark Countries: **Paris**, Bucharest, Sofia, Budapest \rightarrow higher emissions (over allocation of industries)
- Evaluate and improve uncertainties (pollutant and sectorial approach) → Screening method (2 emission inventories, Thunis et. al 2020)

Cold (Oct - Mar)

Warm (Apr - Sep)

BC ff

10 14

Hour of the day (LT)

µg m-3

0.4

18 22

0.6 0.8

NW

W

SW

S

SE

E

NE

N

2

6

0.2

Wind direction

I, IV, VI \rightarrow Marine influence III, IV, $V \rightarrow$ Continental influence (BCwb)

ATOLL platform

ATOLL platform 6-cluster solution

Cluster 3 of 6 - VDA_36_3_1 596 backward trajectories ending at various times GDAS Meteorological Data

Cluster 6 of 6 - VDA_36_3_1 469 backward trajectories ending at various times GDAS Meteorological Data

Objective: Track the BC – footprint → in situ observations

Lille contribution

AAE lifetime

Aerosols and their formation

Aerosols and their formation

Aerosols and their impacts

per year in France

Aerosols and their impacts

Aerosols and their impacts

Spatial contribution to BC level in ATOLL

Winter \rightarrow

Main contributor: - Residential > Traffic

38%

$\textit{Summer} \rightarrow$

Main contributor: ³ - Shipping > Traffic

ATOLL platform

Long-term observations: chemical & optical properties

ATOLL (ATmospheric Observation in liLLe) 50.6111 °N, 3.1404 °E, 70 m a.s.l.

The North of France suffers from significant particulate pollution events

- Heavily populated area
 Influence of anthropogenic sources
- Frequently polluted **continental plumes** arriving to the site

ATOLL platform

P5 roof top Université Lille - Cité Scientifique Villeneuve d'Ascq Cedex

Chemical contribution to the Aerosol Optical Properties (AOPs)

Ammonium sulfate Ammonium nitrate Organics BC

 PM_1 fractional composition according to SSA_{PM1} at 525nm:

AAE sensitivity test

Calculation based in observations:

BC ff (1.2)

Conditions:

- Summer (no influence of BB)
- Work days
- Traffic peak (06h00 09h00)

BC wb (1.6)

Conditions:

- Winter (influence of BB)
- House heating peak (22h00 00h00)