AMA 2023

Des poussières désertiques aux éclairs

Analyse d'une anomalie dans les orages méditerranéens

Sybille de SEVIN IENM3 - Projet de fin d'étude

Christelle BARTHE - Sylvain COQUILLAT -Pierre TULET - Inès VONGPASEUT

Question scientifique :

Quels **processus** expliquent l'impact des **aérosols désertiques** sur le développement de **systèmes** convectifs **électriquement anormaux** ?

<u>Hypothèses</u> :

- Effet radiatif des poussières → Systèmes convectifs moins intenses.
- Effet microphysique des poussières → Formation de cristaux de glace aux dépens de gouttelettes nuageuses.

SIMULATION AVEC MESONH : 14 oct. 2016

Caractéristiques	Initialisation	Schémas physiques
$\begin{array}{llllllllllllllllllllllllllllllllllll$	 <u>CCN</u> et <u>IFN</u> initialisés par les <u>réanalyses CAMS (Copernicus</u> Atmospheric monitoring system) 	Microphysique : - Schéma LIMA à deux moments
couches à 500m en altitude 2) Fils (centré sur la Corse) : $-\Delta x = \Delta y = 500m$ $-\Delta z = idem que le Père$	 Forçages <u>météorologiques</u> initialisés par le <u>centre</u> <u>européen</u> Domaine Père Domaine Fils 	 <u>Aérosols</u>: Modèle de transport et chimie des aérosols naturel Modèle de transport et chimie des aérosols anthropiques
<u>Durée</u> : 24h à partir du 13/10 à 18UTC	44*N 43*N 42*N 40*N	Schéma <u>électrique</u> CELLS 🗱

14 octobre 2016 - Réflectivité Maximales , SIMULATION DE RÉFÉRENCE

Satellite MODIS

Simulation

AOD à 550nm simulé par MesoNH, 13UTC

14 octobre 2016 - **Répartition des charges**

10-2

0

-15

Température (°C)

-10

-20

-25

-30

ETUDES DE SENSIBILITÉ

Simulation de référence	Extinction climatologique des poussières	Peu d'IFN	
Microphysique			
→ Des millions d'IFN en poussière désertique ✔	→ Des millions d'IFN en poussière désertique 🔽	 → Des millions d'IFN en poussière désertique → 10 IFN/L : Atmosphère en conditions "normale" 	
Radiatif			
→ Effet radiatif des poussières 📝	→ Effet radiatif des poussières 💥 → Effet radiatif climatologique	→ Effet radiatif des poussières 🔽	

\rightarrow Systèmes structurellement quasiment identiques sur le Cap Corse

→ Différences notables sur le deuxième système au sud-est

14 octobre 2016 - 14 UTC - Diagramme de Takahashi

CWC (g/kg)

<u>Masque</u> → Maximum de réflectivité > **40 dBz**

Question scientifique :

Quels **processus** expliquent l'impact des **aérosols désertiques** sur le développement de **systèmes** convectifs **électriquement anormaux** ?

<u>Hypothèses</u> :

 Effet radiatif des poussières → Systèmes convectifs moins intenses. X

 2) Effet microphysique des poussières → Formation de cristaux de glace aux dépens de gouttelettes nuageuses.

ANNEXE

14 octobre 2016 - 14 UTC - Densité de vitesses verticales selon l'altitude

Masque → Maximum de réflectivité > 40 dBz

