

Les courants-jets sous-marins: enjeux climatiques et défis scientifiques

Prix André Prud'homme 2022

Audrey Delpech

10 Mai 2023

Thèse soutenue le 10 Février 2021 à Toulouse

Encadrants: Sophie Cravatte, Yves Morel, Frédéric Marin (LEGOS, Toulouse) et Claire Ménesguen (Ifremer, Brest)

Introduction Context

- Ocean currents play an important role in the climate system as they transport and heat and carbon at a global scale
- The understanding and predictions of ocean currents and their variability are therefore crucial to the development of climate models
- At the surface : ocean currents have been extensively observed thanks to satellite data and other in-situ data

Surface currents for 20/01/2021 (OSCAR)

• At depth: only sparse observations, for long currents where considered very weak and the ocean almost at rest

Introduction Observation of deep currents

First in-situ measurements from cruises or moorings

Introduction Observation of deep currents

Introduction Observation of deep currents

Schematic representation of the deep jets

From Ménesguen, Delpech et al. (2019), based on observations from Cravatte et al. (2017)

Introduction Scientific questions

- How do low-latitude deep zonal jets contribute to the global ocean circulation?
- Do they play a role in the transport of water masses?
- What physical processes control their formation and maintenance?
- Are they well represented in climate models?

Introduction Deep zonal jets in climate models

Comparison of models with observations: zonal average (165°E – 175°E) of zonal velocity at 1000 m

Introduction Biogeochemical feedback of deep zonal jets

Systematic bias in the representation of the Oxygen Minimum Zones in climate models

(Cabre et al., 2015)

Implications for **physical-biological coupling** and **carbon cycle estimation**

Introduction Atmospheric feedback of deep zonal jets

Decadal Modulation of Sea Surface Temperature (SST) by Equatorial Deep Jets in the Atlantic Ocean.

Implications for **ocean-atmosphe coupling** and **prediction of rainfalls** in equatorial regions

Introduction Theories for zonal jet formation

A mystery...

Introduction Theories for zonal jet formation

Introduction Thesis Objectives

Objective

- Assess the impact of the deep jets at
- on the transport and transformation
 - of water masses

Objective 2 Understand the energy sources and energy pathways for the formation of the deep jets

Outline

1. Introduction

2. Impact of deep jets on water masses

[Delpech et al. (2020a). Observed tracer fields structuration by deep zonal jets in the tropical Pacific. *Journal of Physical Oceanography*.]

3. Energy Sources in the deep ocean at low-latitudes

[Delpech et al. (2020b). Deep Eddy Kinetic Energy in the tropical Pacific from Lagrangian floats. *Journal of Geophyscial Research: Oceans*.]

4. Mechanisms for the formation of the deep jets

[Delpech et al. (2020c). Intra-annual waves destabilization as a potential driver of the deep low-latitude zonal jets: Barotropic Dynamics. *Journal of Physical Oceanography*.]

5. Conclusions and Perspectives

2. Impact of deep jets on water masses Method

Cruise transects used to characterize the deep jets and their water masses

2. Impact of deep jets on water masses **Tracers signature in Equatorial Deep Jets**

- O₂ maxima in eastward jets
- O₂ minima in westward jets

Equatorial deep jets transport oxygen towards the Eastern Pacific OMZ

2. Impact of deep jets on water masses Tracers signature in Extra-Equatorial Deep Jets

2. Impact of deep jets on water masses Summary

The deep jets contribute to:

- The ventilation (= oxygen advection) of the eastern Pacific OMZ
- The erosion of water masses (= transformation by mixing) advected equatorward from both hemispheres

Confirm the hypothesis of *Cabre et al.* 2015 that the misrepresentation of the deep jets in climate model could explain the systematic bias in the OMZ extent

Outline

Outline

1. Introduction

2. Impact of deep jets on water masses

[Delpech et al. (2020a). Observed tracer fields structuration by deep zonal jets in the tropical Pacific. *Journal of Physical Oceanography*.]

3. Energy Sources in the deep low-latitude ocean

[Delpech et al. (2020b). Deep Eddy Kinetic Energy in the tropical Pacific from Lagrangian floats. *Journal of Geophyscial Research: Oceans*.]

4. Mechanisms for the formation of the deep zonal jets at low latitude

[Delpech et al. (2020c). Intra-annual waves destabilization as a potential driver of the deep low-latitude zonal jets: Barotropic Dynamics. *Journal of Physical Oceanography*.]

5. Conclusions and Perspectives

3. Deep Energy Sources Method

Computation of Turbulent (Eddy) Kinetic Energy (EKE) from Argo float deep velocity estimates

Mean EKE at 1000 m (1999-2019)

3. Deep Energy Sources Method

Definition

3. Deep Energy Sources Example in the Eastern Equatorial Pacific

3. Deep Energy Sources Summary

The deep turbulent energy is characterized by:

- A presence of planetary waves
- Annual and semi-annual Rossby waves for U' along the equator
- Intra-annual waves for V'

Outline

Outline

- 1. Introduction
- 2. Transport and Mixing of water masses by deep zonal jets [Delpech et al. (2020a). Observed tracer fields structuration by deep zonal jets in the tropical Pacific. *Journal of Physical Oceanography*.]
- Energy Sources in the deep low-latitude ocean
 [Delpech et al. (2020b). Deep Eddy Kinetic Energy in the tropical Pacific from Lagrangian floats. *Journal of Geophyscial Research: Oceans*.]

4. Mechanisms for the formation of the deep jets at low latitude

[Delpech et al. (2020c). Intra-annual waves destabilization as a potential driver of the deep low-latitude zonal jets: Barotropic Dynamics. *Journal of Physical Oceanography*.]

5. Conclusions and Perspectives

4. Deep zonal jets formation mechanisms Method

Physics: 2d - configuration only barotropic Rossby waves are generated from the forcing

4. Deep zonal jets formation mechanisms Experiments

4. Deep zonal jets formation mechanisms Theory

Non-Linear Triad Interactions (NLTI)

Theory developed to describe wave instability in plasma by *Connaughton et al.* 2010, applied to barotropic Rossby waves in the ocean

Barotropic Quasi-Geostrophic equation

$$\frac{\partial}{\partial t}(\nabla^2\psi) + \beta\frac{\partial\psi}{\partial x} + J(\psi,\nabla^2\psi) = 0$$

Resolution for:

+

$$\psi_0 e^{i(\mathbf{k}\cdot\mathbf{x}-\omega_{\mathbf{k}}t)}$$

$$\left(\sum_{\mathbf{k}}\psi_{0\mathbf{k}}(t)e^{i(\mathbf{k}\cdot\mathbf{x})}\right)$$

primary wave p

secondary waves initial small perturbations

- Two secondary waves will grow
- Their wavenumbers q and p_= p-q form a triad with the primary wave number such that q + (p-q) = p
- Their growth rate $\sigma_{\mathbf{q}}$ is the same and can be computed analytically

4. Deep zonal jets formation mechanisms Theory

Application Example : Primary Wave T=75 days, λ_x =250 km

4. Deep zonal jets formation mechanisms Validation of the Theory

Simulation Example 1 : Primary Wave T=75 days, λ_x =250 km

Time evolution of KE spectral characteristics in the numerical simulation

4. Deep zonal jets formation mechanisms Can all primary wave generate EEJ-like structures ?

For realistic amplitudes, only short (< 600 km) barotropic Rossby waves are unstable

4. Deep zonal jets formation mechanisms Can all primary wave generate EEJ-like structures ?

Sensitivity of the secondary wave characteristics

4. Deep zonal jets formation mechanisms Summary

- Non-Linear Triad Interactions (NLTI) can explain the formation of Extra-Equatorial Jet (EEJ)-like structures
- Short barotropic Rossby Waves are unstable to NLTI
- Short intra-annual barotropic Rossby Waves destabilize into EEJ-like structures with realistic scales

Observed short intra-annual Rossby Waves can create EEJ at low-latitudes

Conclusions & Perspectives

In this PhD

Conclusions & Perspectives

In this PhD | Perspectives

Is NLTI still a relevant mechanism in a more realistic ocean ?

Merci !

Sophie Cravatte Frédéric Marin Yves Morel Claire Ménesguen Sylvie Le Gentil

Leif Thomas Bertrand Delorme Lixin Qiu

Patrick Lehodey Olivier Titaud Anna Conchon