Sensitivity of Alpine glaciers to anthropogenic atmospheric forcings

Léo Clauzel¹, <u>Martin Ménégoz¹</u>, Adrien Gilbert¹, Olivier Gagliardini¹, Guillaume Gastineau²

¹Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France ²UMR LOCEAN, Sorbonne Université/CNRS/IRD/MNHN, IPSL, 4 place Jussieu, 75005, Paris, France

Contact : martin.menegoz@univ-grenoble-alpes.fr

Glacier of interest

Argentière glacier:

- Mont Blanc Range \bullet
- 2nd largest in France ightarrow
- from 1550 to 3500m a.s.l. •
- ~10km long
- many observations
- mean thickness loss = -25% \bullet since 1900

2015

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

General Circulation Model IPSL-CM6-LR :

- → atmosphere-ocean coupling
- → mesh size : ~150 km

Atmospheric Reanalysis

- → reference data (S2M)
- → mesh size : 40x15 km

Statistical correction

→ Daily temperature and precipitation

General Circulation Model IPSL-CM6-LR :

- → atmosphere-ocean coupling
- → mesh size : ~150 km

Atmospheric Reanalysis

- → reference data (S2M)
- → mesh size : 40x15 km

Statistical correction

→ Daily temperature and precipitation

3D ice flow model

IGE

Surface Mass Balance model Parameterized model

Observational Data GLACIOCLIM observatory, proxies, ...

Glaciological model

- Calibration
- Initialization

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

IGE

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

IGE

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

Statistical correction

Main goals:

- → Downscaling
- → Bias correction at daily timescale

Principle:

- monthly basis
- difference GCM vs. S2M reanalysis
- calibration with historical mean over 1975-2014
- applied for all experiments and the whole period (1850-2014)

Tested methods :

- ★ Simple Quantile Mapping (SQM)
- ★ Coupled Delta Quantile Mapping (CDQM)

Statistical correction

- → Downscaling
- → Bias removing
- → Mean climatology and daily var adjustment

Principle:

- monthly basis
- difference GCM vs. reanalysis
- calibration with historical mean 1975-2014
- applied for all experiments and the whole period (1850-2014)

Tested methods :

- ★ Simple Quantile Mapping (SQM)
- ★ Coupled Delta Quantile Mapping (CDQM)

- → Long-term tendencies
- → Precipitation-temperature consistency

30-year rolling mean of temperature anomaly, reference is the 1975-2014 average, Δ is the 1850-1875 mean anomaly

Precipitation-temperature

consistency :

Precipitation cumulative distributive function relatively to 1°C-width temperature quantiles, solid line corresponds to the member mean and shade area to the member range

CDQM = **delta quantile mapping for T** (Cannon et al., 2015) + **2D conditional approach for P** (Piani et al., 2012)

IGE

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

General Circulation Model outputs

Atmospheric forcing experiments

- → retrospective simulations : 1850-2014
- → HIST, NAT, AER, GHG

Ensemble modeling:

→ 6 members per experiment

Statistical correction :

- Long-term temperature tendencies
- Precipitation-Temperature consistency

⇒ Coupled Delta Quantile Mapping

forcings experiment	volcanic & solar	anthropogenic aerosol	greenhouse gases
HIST	×	×	×
NAT	×		
AER		×	
GHG			×

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

Climate adjusted data

Temperature

Precipitation :

- no clear tendency
- variability dominates

Temperature:

- signals stronger than variability
- significance test ⇒ very likely (P>90%) :
 - AER cooler than NAT by 1971
 - GHG hotter than NAT by 1971
 - HIST hotter than NAT by 1979

30-year rolling mean of (a) temperature and (b) precipitation. Solid lines are 6-member means, shades correspond to the 1- σ member range, vertical black lines show the spin up end, vertical coloured dashed lines indicate the year by which it is very likely (>90%) or unlikely (<10%) to have a lower value than in the natural forcings only experiment

IGE

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

Ateliers de Modélisation de l'Atmosphère 2023

Precipitation

Glacier shape:

- AER ⇒ close to 1850 moraine (cooling effect)
- GHG ⇒ strong glacier retreat (warming effect)
- HIST ⇒ close to 2014 observation (great retreat)
- NAT ⇒ lower retreat compared to HIST (end of Little Ice Age)

Glacier extent for each experiment 6-member mean in 2014. Coordinates are given in meters in Lambert Centre France coordinates (EPSG:27562). Background picture is a Landsat 8 (band L1) georeferenced photograph taken on 03/09/2014, black dashed line is the corresponding glacier extent. 1820 and 1850 observations are from Protin et al. (2019)

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

Ateliers de Modélisation de l'Atmosphère 2023¹¹

<u>Cumulative Mass Balance (~volume):</u>

- Topography independent variable
- Influence of internal variability
- NAT ⇒ mass loss and stabilization around -20 m.w.eq
- **AER** \Rightarrow loss before growth
- HIST ⇒ follow NAT before a great decrease, mass loss very likely stronger than NAT in 2008
- GHG ⇒ mass loss very likely stronger than NAT from 1987

Cumulative Surface Mass Balance, solid lines are 6-member means, shades correspond to the 1- σ member range, vertical black lines show the spin up end, vertical coloured dashed lines indicate the year by which it is very likely (>90%) or unlikely (<10%) to have a lower value than in the natural forcings only experiment. The darken yellow bands highlight the spread simulated in a 800 year control experiment based on constant natural forcing (A 1000 year experiment from which a 200 year spinup is excluded).

Ateliers de Modélisation de l'Atmosphère 2023¹²

Length change:

- Topography dependent variable
- Influence of internal variability
- Little Ice Age positions cannot be explained by internal variability
- HIST ⇒ still compatible with NAT in 2014!
- GHG ⇒ Not compatible with NAT from 2001

Length change from 1820, solid lines are 6-member means, shades correspond to the 1- σ member range, vertical black lines show the spin up end, vertical coloured dashed lines indicate the year by which it is very likely (>90%) or unlikely (<10%) to have a lower value than in the natural forcings only experiment; The darken yellow bands highlight the spread simulated in a 800 year control experiment based on constant natural forcing (A 1000 year experiment from which a 200 year spinup is excluded).

Ateliers de Modélisation de l'Atmosphère 2023¹³

Conclusion

<u>Results:</u>

- → High sensitivity to atmospheric forcings
- → Strong influence of internal variability at this time scale
- → Attribution of mass loss to human activities in 2008 for SMB

Discussion:

- \rightarrow generalizable to other glaciers ?
- → aerosol effect on snow/ice albedo
- → hypothesis on the statistical adjustment

Perspectives:

- → multi-model approach
- → application to other glaciers

Paper in rev.

Length change from 1820, solid lines are 6-member means, shades correspond to the 1- σ member range, vertical black lines show the spin up end, vertical coloured dashed lines indicate the year by which it is very likely (>90%) or unlikely (<10%) to have a lower value than in the natural forcings only experiment; The darken yellow bands highlight the spread simulated in a 800 year control experiment based on constant natural forcing (A 1000 year experiment from which a 200 year spinup is excluded).

Ateliers de Modélisation de l'Atmosphère 2023¹⁴

Thanks for your attention !

Contact : martin.menegoz@univ-grenoble-alpes.fr

(a) Glacier extent for the individual (a) hist, (b) nat, (c) ghg and (d) aer members in 2014. Coordinates are given in meters in Lambert Centre France coordinates (EPSG:27562). Background picture is a Landsat 8 (band L1) georeferenced photograph taken on 03/09/2014, black dashed line is the corresponding glacier extent. 1820 and 1850 observations are from Protin et al. (2019)

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

Ateliers de Modélisation de l'Atmosphère 2023¹⁶

Historical simulations

- → Ensemble mean close to observations
- → Large member spread

Surface Mass Balance

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

Ateliers de Modélisation de l'Atmosphère 2023¹⁷

Historical simulations

- → Ensemble mean close to observations
- → Large member spread

Argentière

Mer de glace

Glaciological model

3D ice flow model:

- → Full-Stokes finite element solvers
- → Refining meshing in front position
- → Digital Elevation Model for bedrocks

Surface Mass Balance model:

- → parameterized model (temperature-index)
- → spatialization of T and P (each node)
- → Accumulation : **A=P if T<1°C**
- → Melt derived from energy (*Oerlemans, 2001*)

Calibration :

- → period 1975-2014
- → observational data (GLACIOCLIM)

Initialization

- \rightarrow 1820 : stable state (*Protin et al., 2019*)
- → 1820-1850 spin-up : initialize dynamics

Digital Elevation Model of Argentière glacier catchment

Sensitivity of Alpine glacier to anthropogenic atmospheric forcings

