Coupled ocean-wave-atmosphere simulations with sea spray over the Gulf of Lion

Sophia E. Brumer^{1,2}, Marie Cathelain¹, Fabien Leckler¹, Nicolas Michelet¹, Jean-Luc Redelsperger², Marie-Noëlle Bouin^{3,2}, Swen Jullien², Héloïse Michaud⁷, Hubert Branger⁵, Jacques Piazzola⁶, Fabrice Veron⁴

¹ France Energies Marines
² Laboratoire d'Océanographie Physique et Spatiale
³ CNRM-Météo-France
⁴ University of Delaware
⁵ IRPHE, CNRS
⁶ Mediterranean Institute of Oceanography
⁷ SHOM

ORE Context

Coupled Model Framework

Common horizontal grid – 1.3 km **Codes versions:** • Meso-NH: v5.4.2 • Meso-NH: Meso-NH SURFEX: v8.1 • Atmospheric model 70 vertical levels (10-900m) WAVEWATCH III®: v7.14 • ₩ • WASP v2 bulk fluxes **SURFEX** • WENO5 15s Surface model sea surface temperature, currents Croco: Senificant wave height windseanceanceanceriod \circ 80 vertical levels ¹0muind speed • WENO5 60s neat and solar OASIS • WAVEWATCH III[®]: Coupler • 32 frequencies (0.05 + 1.1fi) ○ 24 directions Sea surface currents, height • ST4 (MED) WAVEWATCH III® CROCO Wave model Oceanic model Significant wave height, mean wave period and direction, wave stress, wind stress

Case Studies – Model Validation

Wind speed difference at 150 m

High winds generate waves ... and waves act as roughness which slows down winds

(coupled model – uncoupled model)

Binned averaged wind speed difference at 150 m (coupled model – uncoupled model)

- Ardhuin et al. (2010) physical package
 - \circ Underestimation of highest waves, even with increased β_{max} parameter (wind input boost)
- Ongoing development of a new wave breaking parametrisation
 - $\,\circ\,$ More accurate results in short fetch conditions
 - $\,\circ\,$ Better wave breaking statistics

SEA SPRAY

- Quantifying
 - 1. Impact momentum and fluxes \rightarrow surface layer parametrizations

•

•

Film Drops ($r_0 = 0.01 - 2 \mu m$)

• Jet Drops ($r_0 = 2-200 \ \mu m$)

• Spume Drops (r₀ = 10–2300 μm)

Sea-Spray Challenges

- Quantifying
 - 1. Impact momentum and fluxes \rightarrow surface layer parametrizations
 - 2. Production \rightarrow Sea Spray Generation Function (SSGF)

Annu. Rev. Fluid Mech. 47:507–38

NB: THERE ARE MANY KEY UNRESOLVED ISSUES

- \rightarrow Transport & evolution in MABL
- \rightarrow Sea Spray Generation

Environmental parameters considered:

- 1. Wave Breaking Dissipation (Fairall et al., 2009; Lenain & Melville, 2017; Deike, 2021)
- 2. Whitecapping (Shi et al., 2020)
- 3. Wave Steepness (Bruch et al. 2021)
- 4. Fetch (Lussac et al., 2018)
- 5. Wave dependent Reynold numbers / wave age (Troitskaya et al., 2018)

10¹

r [µm]

10²

10³

10-1

10-2

10⁰

Coupled Model Framework

Common horizontal grid – 1.3 km **Codes versions:** • Meso-NH: v5.4.2 • Meso-NH: Meso-NH SURFEX: v8.1 • Atmospheric model 70 vertical levels (10-900m) WAVEWATCH III®: v7.14 • ₩ • WASP v2 bulk fluxes **SURFEX** • WENO5 15s Surface model sea surface temperature, currents Croco: Senificant wave height windseanceanceanceriod \circ 80 vertical levels ¹0muind speed • WENO5 60s neat and solar OASIS • WAVEWATCH III[®]: Coupler • 32 frequencies (0.05 + 1.1fi) ○ 24 directions Sea surface currents, height • ST4 (MED) WAVEWATCH III® CROCO Wave model Oceanic model Significant wave height, mean wave period and direction, wave stress, wind stress

Impact of Spray on Winds – Case Studies

CS2 – Spray impacts on winds

- FRANCE ENERGIES MARINES
- Large local differences, dipoles → fronts shift

 >2m/s difference in 10m wind magnitude
 Difference amplified @ hub height
- Slight increase in mean horizontal winds
- Minimal impact on Cd

CS2 – Spray impacts on turbulent heat fluxes

Averages around LION buoy (deep convection region)

- Spray mediated LHF on O(0.1 %) of LHF but ΔLHF O(1 %)
- Spray mediated LHF and ΔSHF on O(10 %) of SHF

10-2

10-3

10-4

10-5

10-6

10-7

10-8

- Framework ready to be applied to case studies (5 ongoing)
- Coupled results compare well to observations
- Spray impact
 - $\circ~$ On winds is magnified with height
 - 10m winds by >2 m/s, but mostly near fronts
 - Sensible heat fluxes on O(10%)
 - Latent heat fluxes on O(<1%)

Work moving forward:

- 1 year hindcast
- Evaluating sensitivity of spray fluxes to choice of SSGF and degree of coupling
- Incorporating sea spray into LIMA microphysics scheme
- Linking sea spray production to breaking crest length statistics and water side turbulence
 - $\circ~$ SUMOS Campaign
 - \circ SUSTAIN experiment