HIGH-RESOLUTION PROJECTIONS OF EXTREME SEA LEVEL CHANGES ALONG THE COASTS OF WESTERN EUROPE

Alisée Chaigneau ^{1,2}, Angélique Melet ², Aurore Voldoire ¹, Stéphane Law-Chune ², Guillaume Reffray ², Lotfi Aouf ³

¹ CNRM UMR 3589, Météo-France/CNRS, Toulouse, France.
² Mercator Ocean International, Toulouse, France.
³ Météo-France, Toulouse, France.

AMA - 07/06/2022

CONTEXT - INTRODUCTION

Sea level rise (SLR) = key indicator of climate change (World Meteorological Organization)

Adapted from Chaigneau et al., 2022a

- ➤ Hazards :
 - Increased frequency of extreme sea levels
 - Marine flooding
 - Salinization of lands
 - Erosion
 - Disappearance of coastal ecosystems

CONTEXT - INTRODUCTION

Sea level rise (SLR) = key indicator of climate change (World Meteorological Organization)

Projections of mean sea level over the north-eastern Atlantic domain Adapted from Chaigneau et al., 2022a

- ➤ Hazards :
 - Increased frequency of extreme sea levels
 - Marine flooding
 - Salinization of lands
 - Erosion
 - Disappearance of coastal ecosystems
- > Exposure :
 - 10% of the world's population living in low-lying coastal areas (*McMichael et al., 2020*)
 - In Europe : **200 million people involved** (Vousdoukas et al., 2020)

Projections of extreme sea levels (ESLs) needed

SCIENTIFIC CONTEXT – STATE OF ART

Coastal water level changes =

Regional processes + Coastal processes (Woodworth et al., 2019; Dodet et al., 2019; Lowe et al., 2021,...)

+ interactions (Idier et al., 2019; Arns et al., 2020; Arns et al., 2017; Staneva et al., 2016; Marcos et al., 2019; Lewis et al., 2019,...)

often not considered for projections of ESLs

(Muis et al., 2020; Colberg et al., 2019; Fox-Kemper et al., 2021; Kirezci et al., 2020; Vousdoukas et al., 2018;...)

Processes contributing to coastal water level changes Melet et al., 2018

SCIENTIFIC CONTEXT – STATE OF ART

Coastal water level changes =

Regional processes + Coastal processes (Woodworth et al., 2019; Dodet et al., 2019; Lowe et al., 2021,...)

+ interactions (Idier et al., 2019; Arns et al., 2020; Arns et al., 2017; Staneva et al., 2016; Marcos et al., 2019; Lewis et al., 2019,...)

Processes contributing to coastal water level changes Melet et al., 2018

often not considered for projections of ESLs

(Muis et al., 2020; Colberg et al., 2019; Fox-Kemper et al., 2021; Kirezci et al., 2020; Vousdoukas et al., 2018;...)

<u>Aim</u> : At **regional scale**, ESLs projections based on a model that includes :

- the different contributions at the coast: tides, atmospheric surge and waves
- the **interactions** between these

processes

SEA LEVEL SIMULATIONS 1970-2100, SSP5-8.5 and SSP1-2.6

Regional ocean model \longrightarrow Water Level (WL): (1/12° - 75 lev)

IBI-CCS

- Mean Sea Level
- Tides
- Storm surge

SEA LEVEL SIMULATIONS 1970-2100, SSP5-8.5 and SSP1-2.6

SEA LEVEL SIMULATIONS 1970-2100, SSP5-8.5 and SSP1-2.6

RESULTS : WAVES-SEA LEVEL NON-LINEAR INTERACTIONS

MERCATOR OCEAN

CNRM

RESULTS : WAVES-SEA LEVEL NON-LINEAR INTERACTIONS

MERCATOR OCEAN

CNRM

<u>**RESULTS</u>: HISTORICAL ESLs</u> RETURN LEVELS (1985-2014)**</u>

- IBI-CCS+IBI-CCS-WAV(TWL)
- IBI-CCS+IBI-CCS-WAV_ssh(TWL)

<u>**RESULTS</u>: HISTORICAL ESLs</u> RETURN LEVELS (1985-2014)**</u>

- IBI-CCS+IBI-CCS-WAV(TWL)
- IBI-CCS+IBI-CCS-WAV_ssh(TWL)

<u>RESULTS</u>: AMPLIFICATION OF THE HISTORICAL CENTENNIAL EVENT (HCE)

<u>RESULTS</u>: AMPLIFICATION OF THE HISTORICAL CENTENNIAL EVENT (HCE)

<u>RESULTS</u>: YEAR IN WHICH THE HISTORICAL CENTENNIAL EVENT (HCE) OCCURS ONCE A YEAR (SSP5-8.5)

MERCATOR OCEAN

CNRM

• : Locations where HCEs recur annually after 2095

CONCLUSIONS & LIMITATIONS

Conclusions:

- (1) Nonlinear waves-sea level interactions are large for significant wave height but are small for wave setup
- (2) Wave setup contribution to ESLs is large over the northeastern Atlantic region

Limitations of the study :

- Ocean modeling (Chaigneau et al., 2022a)
 - dry areas not allowed
 - GRD (gravitation, rotation, and deformation) effects : regional fingerprint not included
 - Impact waves \rightarrow sea level not considered
- Wave contribution (Chaigneau et al., 2022b in prep)
 - Swash (wave oscillations) not accounted for
 - Parameterization for wave setup (Stockdon 2006)
 - 1/10° horizontal resolution limits the nonlinear interactions

Thank you! achaigneau@mercator-ocean.fr

×

PRC

MERCATOR OCEAN

INTERNATIONAL

1. 11

AMA - 07/06/2022

1.1.1

ADDITIONAL SLIDES

1. 11

×

PRC

MERCATOR OCEAN

INTERNATIONAL

AMA - 07/06/2022

1.1. 1

METHODOLOGY

METHODOLOGY

<u>RESULTS</u>: VALIDATION OF THE 99th PERCENTILE (1993-2014)

IBI-CCS-WAV

IBI-CCS

Validation of non-tidal residuals in Chaigneau et al., 2022 (GMD)

RESULTS: VALIDATION OF HISTORICAL 10-YEAR RETURN LEVEL (1985-2014)

IBI-CCS

<u>RESULTS</u>: PROJECTIONS OF ESLs (SSP5-8.5) RETURN LEVELS (1985-2014 & 2071-2100)

- IBI-CCS (WL)
- IBI-CCS+IBI-CCS-WAV(TWL)
- IBI-CCS+IBI-CCS-WAV_ssh(TWL)
- BI-CCS, ssp585
- IBI-CCS+IBI-CCS-WAV, ssp585
- IBI-CCS+IBI-CCS_WAV_ssh, ssp585
- Future frequency of the historical 100-year event (Amplification Factor = AF)
- AFs are reduced in wave dominated areas as the curves have a larger slope (as shown in Lambert et al., 2020)

MERCATOR OCEAN

CNRM

Locations where HCEs recur annually after 2095

<u>RESULTS</u>: YEAR IN WHICH THE HISTORICAL CENTENNIAL EVENT (HCE) OCCURS ONCE A YEAR

MERCATOR OCEAN

CNRM

Locations where HCEs recur annually after 2095