

OCEAN-ATMOSPHERE COUPLING IN THE MEDITERRANEAN: ROLE OF OCEANIC EXCHANGES AT THE STRAIT OF GIBRALTAR

Nicolas Matthieu Gonzalez^a, Robin Waldman^a, Florence Sevault^a, Samuel Somot^a, Herve Giordani^a, Jérôme Chanut^b

^aCentre National de Recherches Météorologiques (CNRM/Météo France) – Toulouse – France ^bMercator Océan – Toulouse – France Contact: nicolas.gonzalez@meteo.fr

June 7, 2021

1

1

1

1

1

On climatic scales: Basin-scale impact of turbulent mixing at the SoG

On climatic scales: Basin-scale impact of turbulent mixing at the SoG

On climatic scales: Basin-scale impact of turbulent mixing at the SoG

by tidal mixing at the SoG (1998-2007 average) -500 $\frac{2}{9}$ –1000 -1500 -500 depth -1000 -1500 10 20 25 -5 0 5 15 30

Figs 15 and 16 Harzallah et al. 2014 Zonal section of temperature and salinity anomalies induced

Longitude

- Over 50-year-long simulations: **General cooling and saltening** $(~0.08$ °C and 0.012 *psu*)
- Modifications mainly contained in **the upper 150m depth.**

S (psu)

 0.5

 -0.5

 0.2

 10.1

0

 -0.1

 -0.2

35

 \overline{C}

Scientific question: Understanding the role of the SoG for the Mediterranean climate

• On climatic scale, the SoG representation induces basin-scale modifications of the Mediterranean surface. However, the consequences on the ocean-atmosphere exchanges are poorly known.

Scientific question: Understanding the role of the SoG for the Mediterranean climate

• On climatic scale, the SoG representation induces basin-scale modifications of the Mediterranean surface. However, the consequences on the ocean-atmosphere exchanges are poorly known.

What role does the SoG representation play for the Mediterranean climate?

Introduction

- I. Methods: A coupled regional climate model of the Mediterranean region
- II. Oceanic adjustment to tidal mixing at the SoG
- III. Impacts on the ocean-atmosphere interface

Conclusions et perspectives

Introduction

- **I. Methods: A coupled regional climate model of the Mediterranean region**
- II. Oceanic adjustment to tidal mixing at the SoG
- III. Impacts on the ocean-atmosphere interface

Conclusions et perspectives

CNRM-RCSM6 coupled regional climate system model

• **Atmosphere:** ALADIN coupled with interactive aerosols scheme TACTIC.

- **Atmosphere:** ALADIN coupled with interactive aerosols scheme TACTIC.
- **Continental surfaces:** SURFEX

- **Atmosphere:** ALADIN coupled with interactive aerosols scheme TACTIC.
- **Continental surfaces:** SURFEX
- **Rivers:** CTRIP

- **Atmosphere:** ALADIN coupled with interactive aerosols scheme TACTIC.
- **Continental surfaces:** SURFEX
- **Rivers:** CTRIP
- **Ocean:** NEMO model in regional configuration.

- **Atmosphere:** ALADIN coupled with interactive aerosols scheme TACTIC.
- **Continental surfaces:** SURFEX
- **Rivers:** CTRIP
- **Ocean:** NEMO model in regional configuration.

NEMOMEDGIB regional configuration

• **Horizontal resolution of** 1/12° (5.5 - 7.5km); **75 vertical levels** (from 1m to 130m thick), z partial-step coordinates.

NEMOMEDGIB regional configuration

- **Horizontal resolution of** 1/12° (5.5 7.5km); **75 vertical levels** (from 1m to 130m thick), z partial-step coordinates.
- **Open boundary conditions** in the Atlantic Ocean.

NEMOMEDGIB regional configuration

- **Horizontal resolution of** 1/12° (5.5 7.5km); **75 vertical levels** (from 1m to 130m thick), z partial-step coordinates.
- **Open boundary conditions** in the Atlantic Ocean.
- **Time-splitting** of the baroclinic dynamics.

NEMOMEDGIB regional configuration

- **Horizontal resolution of** 1/12° (5.5 7.5km); **75 vertical levels** (from 1m to 130m thick), z partial-step coordinates.
- **Open boundary conditions** in the Atlantic Ocean.
- **Time-splitting** of the baroclinic dynamics.
- **Realistic representation of the SoG:**
	- Tidal forcing at the Atlantic boundaries (FES2014) and tidal potential in the Mediterranean Sea.
	- AGRIF zoom at the SoG (1/60°).

Two simulations in hindcast mode

• One simulation with a **Non-Tidal and Low-Resolution** representation the SoG, one with a **Tidal and High-Resolution** (1/60°) representation.

Two simulations in hindcast mode

- One simulation with a **Non-Tidal and Low-Resolution** representation the SoG, one with a **Tidal and High-Resolution** (1/60°) representation.
- Forcings:
	- Atmosphere: **ERA-Interim** (reanalysis)
	- Ocean: ORAS4 (reanalysis)

Two simulations in hindcast mode

- One simulation with a **Non-Tidal and Low-Resolution** representation the SoG, one with a **Tidal and High-Resolution** (1/60°) representation.
- Forcings:
	- Atmosphere: **ERA-Interim** (reanalysis)
	- Ocean: ORAS4 (reanalysis)

Two simulations in hindcast mode

- One simulation with a **Non-Tidal and Low-Resolution** representation the SoG, one with a **Tidal and High-Resolution** (1/60°) representation.
- Forcings:
	- Atmosphere: **ERA-Interim** (reanalysis)
	- Ocean: ORAS4 (reanalysis)

Introduction

I. Methods: A coupled regional climate model of the Mediterranean region

II. Oceanic adjustment to tidal mixing at the SoG

III. Impacts on the ocean-atmosphere interface

Conclusions et perspectives

Modified seasonal cycle of surface temperature over the western Mediterranean

Modified seasonal cycle of surface temperature over the western Mediterranean

• **Warm bias in summer** with respect to satellite measurements. Moderate improvement in T HR

Modified seasonal cycle of surface temperature over the western Mediterranean

- **Warm bias in summer** with respect to satellite measurements. Moderate improvement in T HR
- The cooling effect of tidal forcing and AGRIF zoom at the SoG is **maximal in summer**.

Cooling of the summer surface temperature in T HR

Cooling of the summer surface temperature in T HR

• The cooling is maximal in the **Alboran Sea** where it reaches up to -1.5 °C.

Cooling of the summer surface temperature in T HR

- The cooling is maximal in the **Alboran Sea** where it reaches up to -1.5 °C.
- In the Balearic Sea: **local hot anomaly.**

Cooling of the summer surface temperature in T HR

- The cooling is maximal in the **Alboran Sea** where it reaches up to -1.5 °C.
- In the Balearic Sea: **local hot anomaly.**
- The bias with respect to satellite measurements **reduces by 15% in T HR.**

Cooling of the summer surface temperature in T HR

- The cooling is maximal in the **Alboran Sea** where it reaches up to -1.5 °C.
- In the Balearic Sea: **local hot anomaly.**
- The bias with respect to satellite measurements **reduces by 15% in T HR.**
- $\%$ What are the mechanisms driving these anomalies ?

Cooling of the summer surface temperature in T HR

- The cooling is maximal in the **Alboran Sea** where it reaches up to -1.5 °C.
- In the Balearic Sea: **local hot anomaly.**
- The bias with respect to satellite measurements **reduces by 15% in T HR.**
- $\%$ What are the mechanisms driving these anomalies ?

JJA sea surface temperature Lower panel: Tidal and AGRIF zoom anomalies

Tidal mixing at the SoG

Zonal section of temperature (shades) and currents at the SoG

Tidal mixing at the SoG

Tidal mixing at the SoG

• Tide-induced **vertical recirculation** of the outflowing Mediterranean waters.

Tidal mixing at the SoG

- Tide-induced **vertical recirculation** of the outflowing Mediterranean waters.
- The upwelled water masses are assimilated by **vertical mixing, mainly driven by static instabilities.**

Tidal mixing at the SoG

- Tide-induced **vertical recirculation** of the outflowing $\frac{1}{2}$ Mediterranean waters.
- The upwelled water masses are assimilated by **vertical mixing, mainly driven by static instabilities.**
- As a result, inflowing Atlantic waters are **cooled and salted**.

Tidal mixing at the SoG

- Tide-induced **vertical recirculation** of the outflowing $\frac{1}{2}$
Mediterranean waters. Mediterranean waters.
- The upwelled water masses are assimilated by **vertical mixing, mainly driven by static instabilities.**
- As a result, inflowing Atlantic waters are **cooled and salted**.

Modified circulation in the Western Mediterranean

Dynamic sea level (shades) and near surface velocity.

Modified circulation in the Western Mediterranean

Dynamic sea level (shades) and near surface velocity. Bottom panel: Tidal and AGRIF zoom anomalies 44° N $0.30 \,\mathrm{m s^{-1}}$ 42° N NT LR (ref) 40° N $38°N$ $36°N$ -0.20 -0.15 -0.10 -0.05 0.00 0.15 0.05 0.10 0.20 44° N $0.10 \, \text{m} \text{s}^{-1}$ 42° N THR-ref 40° N $38°N$ $36°N$ 4° W $2°W$ 0° $2^{\circ}E$ $4^{\circ}E$ $6^{\circ}E$ 8°E 10°E $6°W$ $\frac{2}{SSH}-\frac{0.00}{SSH}_{xy}\left[m\right]$ -0.04 -0.02 0.02 0.04

Modified circulation in the Western Mediterranean

• The anticyclonic gyre at the entrance of the Mediterranean Sea is **enhanced and displaced eastward**.

Modified circulation in the Western Mediterranean

- The anticyclonic gyre at the entrance of the Mediterranean Sea is **enhanced and displaced eastward**.
- **The Ligurian Sea cyclonic circulation weakens.** This induces the warm anomaly previously noted.

Modified circulation in the Western Mediterranean

- The anticyclonic gyre at the entrance of the Mediterranean Sea is **enhanced and displaced eastward**.
- **The Ligurian Sea cyclonic circulation weakens.** This induces the warm anomaly previously noted.
- In T HR, the bias with respect to **Rio et al. 2014** climatology of the Mediterranean Sea surface elevation **decreases by** 14%

Introduction

- I. Methods: A coupled regional climate model of the Mediterranean region
- II. Oceanic adjustment to tidal mixing at the SoG

III. Impacts on the ocean-atmosphere interface

Conclusions et perspectives

Bottom panel: Tidal and AGRIF zoom anomalies 44° N LR (ref)
 40° N \leftrightarrow Q. $\overline{\overline{z}}$ $36°N$ \widetilde{SST}_{xy} = 23.8 $\widetilde{\mathsf{SHF}}_{xy} = 49.1$ $LHF_{xy} = 53.1$ 22 23 120 0 20 21 24 25 Ω 40 80 30 60 90 120 150 $SST\ [^\circ C]$ $SHF[W.m^{-2}]$ $LHF[W.m^{-2}]$

JJA sea surface temperature, sensible heat flux, and latent heat flux

Surface turbulent fluxes

JJA sea surface temperature, sensible heat flux, and latent heat flux Bottom panel: Tidal and AGRIF zoom anomalies

- ref

Surface turbulent fluxes

• Tidal cooling of the sea surface results in a **reduction of ocean heat loss,** mainly through the decrease of latent heat flux.

JJA sea surface temperature, sensible heat flux, and latent heat flux Bottom panel: Tidal and AGRIF zoom anomalies

20

Surface turbulent fluxes

- Tidal cooling of the sea surface results in a **reduction of ocean heat loss,** mainly through the decrease of latent heat flux.
- This anomaly is significant in areas of **intense cooling and strong winds.**

JJA sea surface temperature, sensible heat flux, and latent heat flux Bottom panel: Tidal and AGRIF zoom anomalies

Surface turbulent fluxes

- Tidal cooling of the sea surface results in a **reduction of ocean heat loss,** mainly through the decrease of latent heat flux.
- This anomaly is significant in areas of **intense cooling and strong winds.**
- The sensible heat flux is locally **intensified** over the northern Mediterranean coast. However, with a **low intensity** with respect to the mean fluxes.

JJA sea surface temperature, sensible heat flux, and latent heat flux Bottom panel: Tidal and AGRIF zoom anomalies

Atmospheric surface properties

Atmospheric surface properties

Atmospheric surface properties

Over the sea, surface temperature mainly **decreases**. Over land, the anomalies are of lower amplitude.

Atmospheric surface properties

- Over the sea, surface temperature mainly **decreases**. Over land, the anomalies are of lower amplitude.
- Specific humidity **decreases** over both the western Mediterranean Basin and coast.

 44° N (ref) Ψ 40°N Q^o È $36°N$ \widetilde{SST}_{xy} = 23.8 $\widetilde{T2m_{xy}}$ = 23.4 $\widetilde{SH}_{xy} = 9.7$ 20 21 22 23 24 250 16 24 32 10 12 6 8 14 44° N - ref $\widetilde{\Xi}^{40^\circ\mathrm{N}}$ $36°N$

 $\Delta = -0.036$

 -0.3 0.0

 $T2m$ [C]

 $p = 5.15 \cdot 10^{-25}$

 $5^{\circ}E$

 0.3

0.6

5°W

 -0.2

 $\Delta = -0.16$

 0.0

 SST $[C]$

5°W

 -0.6

 -0.3

 $p = 1.64 \cdot 10^{-27}$

 $5^{\circ}E$

 0.3

0.6

 5° W

 -0.6

JJA sea surface temperature, near-surface air temperature, and specific humidity Bottom panel: Tidal and AGRIF zoom anomalies

 0.2

 $\Delta = 0.037$

 0.0

 $SH[g.kg^-]$

 -0.1

 $p = 4.93 \cdot 10^{-2}$

 $5^{\circ}E$

 0.1

Precipitations and cloud fraction

Precipitations and cloud fraction

Precipitations and cloud fraction

• Relative humidity **decreases over the land**, but **increases over the ocean** due to the decrease of saturation humidity. JJA relative humidity, precipitations, and cloud fraction Bottom panel: Tidal and AGRIF zoom anomalies

Precipitations and cloud fraction

- Relative humidity **decreases over the land**, but **increases over the ocean** due to the decrease of saturation humidity.
- Most of precipitation anomalies are **not statistically significant**. However, the **mean reduction of** $~\sim 1\%$ **over the** western Mediterranean region is.

JJA relative humidity, precipitations, and cloud fraction Bottom panel: Tidal and AGRIF zoom anomalies

17

Precipitations and cloud fraction

• Cloud fraction **moderately diminishes** over most of the Western Mediterranean.

 44° N \underline{F} 40°N 300 Q^0 \overline{z} $36°N$ $\widetilde{RH}_{xy} = 57.2$ $\widetilde{precip}_{xy} = 0.79$ $\widetilde{cldrac}_{xy} = 41.1$ 20 40 60 80 4 1 5 30 45 60 75 Ω 2 3 44° N - ref E^2 ^{40°N} \ll $36°N$ $\Delta = -0.0080$ $\Delta = -0.079$ $\overline{\Delta}$ \approx -0.016 $p = 6.41 \cdot 10^{-11}$ $p = 0.0017$ $p = 1.44 \cdot 10^{-11}$ $5^{\circ}E$ 5° W $5^{\circ}E$ 5° W $5^{\circ}E$ 5° W -1.5 0.0 1.5 $-0.12 -0.06$ 0.00 0.06 $0.12 -0.8$ -0.4 0.0 0.4 0.8 $RH[\%]$ $cldrac$ ^[%] $precip$ [mm.j⁻¹]

JJA relative humidity, precipitations, and cloud fraction Bottom panel: Tidal and AGRIF zoom anomalies

Precipitations and cloud fraction

- Cloud fraction **moderately diminishes** over most of the Western Mediterranean.
- In the Alboran Sea and at the north of Morocco, it **locally increases** because of the saturating humidify reduction.

JJA relative humidity, precipitations, and cloud fraction Bottom panel: Tidal and AGRIF zoom anomalies

• A new configuration of regional coupled model has been developed, including high-resolution and tidal representation of the SoG, and allowing to perform simulations on climatic scales.

- A new configuration of regional coupled model has been developed, including high-resolution and tidal representation of the SoG, and allowing to perform simulations on climatic scales.
- The representation of tidal mixing at the SoG results in a cooling of Western Mediterranean Sea surface temperature, in better agreement with observations and literature.

- A new configuration of regional coupled model has been developed, including high-resolution and tidal representation of the SoG, and allowing to perform simulations on climatic scales.
- The representation of tidal mixing at the SoG results in a cooling of Western Mediterranean Sea surface temperature, in better agreement with observations and literature.
- The atmospheric surface above the ocean is cooled and dried. As a result, precipitation and cloud fraction moderately decrease.

- A new configuration of regional coupled model has been developed, including high-resolution and tidal representation of the SoG, and allowing to perform simulations on climatic scales.
- The representation of tidal mixing at the SoG results in a cooling of Western Mediterranean Sea surface temperature, in better agreement with observations and literature.
- The atmospheric surface above the ocean is cooled and dried. As a result, precipitation and cloud fraction moderately decrease.
- Land impacts are of lower intensity, but they remain significative in island and coastal areas.

DISCUSSIONS

• This study highlights the influence of ocean vertical mixing on the surface atmosphere, which participates to the summer drying of the surface atmosphere.

DISCUSSIONS

- This study highlights the influence of ocean vertical mixing on the surface atmosphere, which participates to the summer drying of the surface atmosphere.
- The underlined mechanisms should be studied in the context of global warming simulations, in which their effects may be intensified due to the projected increase of surface ocean stratification.

CONCLUSIONS / DISCUSSIONS

- A new configuration of regional coupled model has been developed, including high-resolution and tidal representation of the SoG, and allowing to perform simulations on climatic scales.
- The representation of tidal mixing at the SoG results in a cooling of Western Mediterranean Sea surface temperature, in better agreement with observations and literature.
- The atmospheric surface above the ocean is cooled and dried. As a result, precipitation and cloud fraction moderately decrease.
- Land impacts are of lower intensity, but they remain significative in island and coastal areas.
- This study highlights the influence of ocean vertical mixing on the surface atmosphere, which participates to the summer drying of the surface atmosphere.

• The underlined mechanisms should be studied in the context of global warming simulations, in which their effects may be intensified due to the projected increase of surface ocean stratification.

Mail: nicolas.gonzalez@meteo.fr

References

Harzallah, A., Alioua, M., Li, L., 2014. Mass exchange at the Strait of Gibraltar in response to tidal and lower frequency forcing as simulated by a Mediterranean Sea model. Tellus A: Dynamic Meteorology and Oceanography 66, 23871. URL: [https://doi.org/10.3402/tellusa.v66.23871,](https://doi.org/10.3402/tellusa.v66.23871) doi:10.3402/tellusa.v66.23871

Jorda, G., Von Schuckmann, K., Josey, S.A., Caniaux, G., Garcıa-Lafuente,J., Sammartino, S., Ozsoy, E., Polcher, J., Notarstefano, G., Poulain, P.M., Adloff, F., Salat, J., Naranjo, C., Schroeder, K., Chiggiato, J., Sannino, G., Macıas, D., 2017. The Mediterranean Sea heat and mass budgets: Estimates, uncertainties and perspectives. Progress in Oceanography 156, 174– 208. doi:10.1016/j.pocean.2017.07.001.