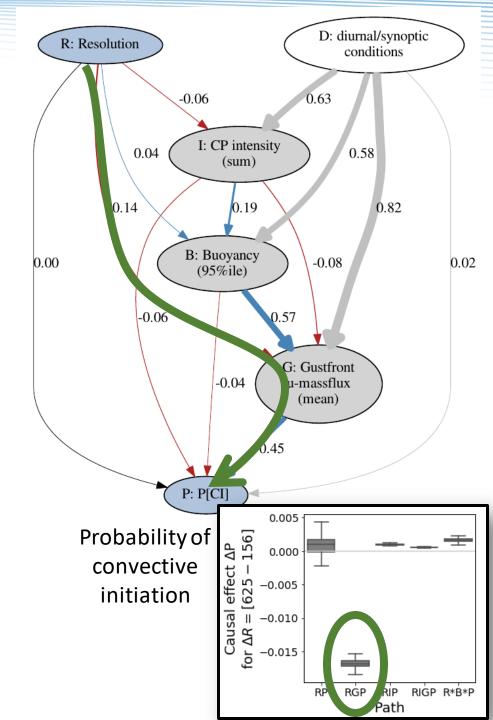

A cold pool perturbation scheme to improve the second convective initiation in convection-permitting models

- Cold pools originate from evaporation at convective downdrafts
 - At their gust fronts, new convection is often triggered


→ Cold pools are relevant for Convective initiation and organization of convection (secondary initiation)

Cold pools are not well represented in convection permitting models!

- Cold pools are more frequent, smaller and less intense in lower resolutions (156m – 612m; HDCP2 ICON-LEM simulations).
- Their **gust fronts** are **weaker** and **trigger less** new convection in lower resolutions.
- **Causal graph analysis**: RGB path dominates: Lower model resolution causes weaker gustfronts, which reduces convective initiation.

\rightarrow Develop perturbations to strengthen cold pool gust fronts

 Hirt, M., Craig, G. C., Schäfer, S. A. K., Savre, J. and Heinze, R. (2020) "Cold pool driven convective initiation: using causal graph analysis to determine what convection permitting models are missing", Quarterly Journal of the Royal Meteorological Society.

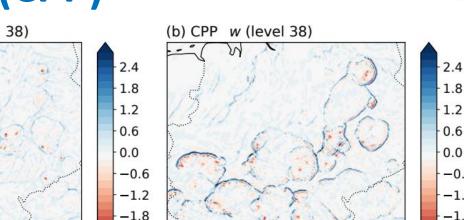
The Cold Pool Perturbation Scheme (CPP) (a) Reference w (level 38)

CPP: We relax the model vertical velocity towards a target vertical velocity w_0 at cold pool gust fronts:

Cold poo

$$\left. \frac{\partial w}{\partial t} \right|_{cp} = \frac{w_0 - w}{\tau_{cp}}$$

 w_0 is the vertical velocity a fully resolved cold pool would ideally have: $w_0 = \alpha \sqrt{BH}$


Impact of CPP:

- More pronounced gust fronts
- More convective Initiation \rightarrow more precipitation

-2.4

-3.0

- More organization of precipitation
- Hirt, M. and Craig, G.C. (2021), A cold pool perturbation scheme to improve convective initiation in convection-permitting models. Q J R Meteorol Soc. Accepted Author Manuscript. https://doi.org/10.1002/qj.4032

2.4

1.2

0.6

0.0

-0.6

-1.2

-1.8

-2.4