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Abstract: Given that mortality rates during a heat wave are a sensitive function of
temperature, forecast maps of temperature anomalies within cities should be useful to the
health community. An empirically based approach for predicting daily spatial variations in
the Urban Heat Island has been developed for New York City. Our technique is derived
from two data sets: high spatial resolution temperature data collected by multiple
synchronized traverses of Manhattan by foot; and several months of high temporal
resolution data collected at 10 fixed locations by instruments mounted on lamp posts. The
high spatial resolution data is regressed against local characteristics such as vegetation,
albedo and building height to produce a statistical model of relative temperature
anomalies. The fixed instruments show local temporal variability attributed to convection,
and spatial variability between instruments attributed to local surface characteristics. The
magnitudes of both types of variability are regressed against weather conditions such as
cloud cover, wind speed, lapse rate and humidity. When applied to the average spatial
anomaly map, the amplitude of the temperature variations within the city each day can be
predicted based on a weather forecast. A working model is online, predicting
temperature variations within the city 24 hours in advance, and is currently undergoing
testing. The technique should be easily portable to other similar cities.

Introduction

The varying surface characteristics inside a city means that the urban heat island is best
characterized as an archepelago [Grimmond, 2007], with temperatures changing on the
neighborhood scale. Once temperatures climb above a certain threshold the health
impacts become a sensitive function of temperature [Kinney et al, 2008] complicating
the influence of neighborhood demographics and the response to heat events. Given
the difficulties of modeling microclimate on this scale it is unlikely that the health
community will have access to the physical modeling they need to predict impacts
within a city. We have therefore worked to create a much simpler statistical model
based on surface characteristics and weather that can be used to estimate temperature
variability within large cities such as New York.

Dataset

Data collection was focussed on Manhattan, and consisted of a series of 19 walking
campaigns during the summers of 2012 and 2103 along 8 fixed routes with
measurements at a uniform 1.5 meters above the ground, and a set of 10 fixed
instruments set up for a 3 month period during the summer of 2013 set between 3.2
and 3.9 meters above the ground [Vant-Hull et al, 2014]. All instruments measured
temperature, RH and visible light; though this paper concerns only the temperature.
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Figure 1: Dataset locations. Left: averaged temperature deviations, in units of standard
deviations. Middle: Student T values for the walking campaigns. Right: fixed instrument
locations superimposed on walking route examples. Yellow is within 1/4 standard deviation of
average. The red end of the scale is above average, the blue end of the scale is below average.

The walking campaigns consisted of 8 field agents starting simultaneously on the
western eadge of Manhattan at 2 pm, predominantly walking in shadow. Data was
collected every 6 seconds but aggregated into 20 segments, each roughly 150 meters in
length. Each day the standard deviation of all these segments was calculated, the
average temperature was subtracted and the residuals scaled by the standard deviation.
These scaled residuals were averaged together to produce the left panel of Figure 1.
These variations should be due to surface characteristics. These variations were
compared to an average point by the Student T test, and in the middle panel the results
show that deviations from the average tend to be significant, as red and blue values
indicate the 90% confidence level.

As the walking campaigns are episodic, they are accompanied by fixed instruments with
locations shown on the right of Figure 1. These instruments were measuring every 3
minutes to capture not only the diurnal cycle and range of weather conditions, but



convective variability. Hourly averages were used to filter out temporal variability, and
the differences between hourly averages at different locatons reflect the spatial
variability.

This data set is publicly available, described in detail [Vant-Hull et al, 2014] and
accessible at http://glasslab.engr.ccny.cuny.edu/u/brianvh/UHI/ .

Model Development

The goal is to extend the results shown in the middle of Figure 1 throughout Manhattan
for any summer day. The first step is to extend the results spatially by regressing the
local averages of the temperature variations against local characteristics that might
affect temperature. The following variables were used:

Variable Source comments

Elevation US Geological Survey | 1 m vertical resolution
regridded to 50 m horizontal resolution

Water fraction Based on elevation Fraction of sea level within a 1 km square
centered on each point

Vegetation LandSat Normalized Vegetation Index regridded
to 50 m resolution

Albedo LandSat Narrow to broadband conversion
regridded to 50 m resolution

Building Fraction | New York City Tax Lot | Regridded to 100 m resolution

database (mapPluto)
Building Height MapPluto Regridded to 100 m resolution

Table 1: Surface variables regressed against local observations of temperature variations.

Multivariable linear regression was applied, with the results shown in Figure 2 below.
For those who are familiar with Manhattan it should be immediately obvious that
elevation is a key variable, and it had the heighest correlation to street level
temperature. In fact the relationship is super-adiabatic, indicating that the effect is not
due to air temperature variation with altitude alone. We hypothesize that since these
air temperatures are measured in the afternoon when surface temperatures are
generally much warmer than air temperature, exposure to wind causes less
equilibration at high elevations compared to sheltered lower elevations. This has been
tested by Karimi et al [2015] by regressing the difference in temperature between two
elevations to weather variables, and finding wind is the most significant factor after
temperature itself.

The regressed and observed temperature variations are compared on the left of Figure
2, and we see the multivariable correlation of 0.67, with an average deviation of 0.2.



e Figure 2: Results of the regression of the observations of
g Figure 1 against local surface characteristics. Left: extending
4. the observations across Manhattan based on the local
- f characteristics. Same color scale as Figure 1. Right:
comparison of observations to regressed values.

The map shown in Figure 2 shows temperature in terms of number of standard
deviations from the average. In order to get temperature itself we need both the
average and the standard deviation for each day. The average temperature is easily
obtained by observation or weather forecast; to find the standard deviation we must
turn to the set of fixed instruments.

The spatial standard deviation in temperature at 2 pm each afternoon for 3 months was
calculated from the set of 10 station hourly averages. These daily standard deviations
were regressed against weather variables taken from the North American Model
Regional Reanalysis (NARR, National Climatic Data Center). The variables used appear in
Table 2.

Weather Variable Description

Temperature

2 meters above ground

Relative Humidity

2 meters above ground

North, West Wind

10 meters above ground

Wind Speed

10 meters above ground

Evaporation Potential

(Wind speed)*(1 — RH)

Cloud Fraction

Total column

Downwelling shortwave

Watts/m?’

Downwelling longwave

Watts/m?’

Low level lapse rate

(T,—T1)/(H;—H;) 1: 975 mb 2:950 mb

Low level lapse rate

(T,=T1)/(H,—H;) 1: 950 mb 2:925 mb

Table 2: NWP analysis variables regressed against surface temperature variability.
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Figure 3: Regression of Weather Variables against Temperature variability. Observations versus
regressed results.

Figure 3 demonstrates moderate skill when weather variables are used to predict the
magnitude of temperature variations within an urban environment. This means
weather forecasts can be used to predict not just the average temperature, but the
spread of temperatures as shown on the left of Figure 2. Predicting the temperature
pattern throughout a city proceeds in two steps:

1. Calculate the pattern of temperature variations based on surface characteristics,
in units of standard deviations from the average each day

2. Use the weather forecast to predict the temperature average and standard
deviation for the day. Use this to convert the scale of Figure 2 to actual
temperature.

This has been done, and is running routinely for the city of New York. Nowcasts and
forecasts are available at
http://glasslab.engr.ccny.cuny.edu/u/brianvh/UHI/modelpage.html

Concluding Remarks

This model is meant to be simple, and is easily criticized on physical grounds; for
example assuming that the effects of weather and surface variables are separable. But
the simplicity means that ease of applicability is being traded for accuracy. The surface
variable coefficients should largely be transferable to city centers that resemble
Manhattan, though the dependence of variability on wind components suggest that
different topographies may respond differently. We would recommend that cities set
up individual instrument arrays that will reflect characteristic variability.
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