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Project

o Ensemble data assimilation for
storm surge forecasting

0 Joint project with Clint Dawson
group — ICES, UT Austin

0 Area of interest: “Gulf of Mexico”

0 Goal: develop and implement a fully parallel
nonlinear/ensemble filtering system for efficient storm
surge forecasting



Motivations

o We implemented a variety EnKFs with ADCIRC with quite
reasonable and comparable performances

o All filters exhibit some weakness during the surge associated
with the change of regime: KFs are not well designed for such
systems (Bennett, 2002; Hoteit et al., 2002):

> Look for ways to improve EnKFs during the surge

> Give some sense to the “inflation trick” we are using in
EnKFs



Intro: Bayesian vs. Robust Filtering

0o Bayesian filters update a prior with Bayes’ rule to determine
posterior, e.g. KFs, EnKFs, PFs, ... Estimates are based on the
minimum variance criterion

~ All these filters make some assumptions on the statistical
properties of the system, but these are often poorly known
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» No guaranty that the RMS errors of these filters are “bounded”,
even though they are in some sense optimal

» Given all sources of poorly known uncertainties in the system,
we opt for using a robust instead of an optimal criterion




Problem Formulation

o Consider the linear data assimilation problem
X; = M1 (Xi—1) +wy
yi = Hi(x;) + v,

o X; System state attime/
° M, i transition matrix
o y; measurementof X
o H, Observation matrix

o u; dynamicaland Vv; observation Gaussian noise



Problem

o We are interested in estimating some linear combinations
1 a
of the system states zj,--- . z%

z; = L;X;
given available observations

o If L, the identity matrix, then the problem reduces to the
estimation of the system state at every time

0 Two ways to deal with this problem:
v Direct estimation of z;
v Indirect estimation: first estimate x; then deduct z;



Kalman Filter Optimality

0 The KF optimality is based on the minimum variance

estimate
N
JEF (2, af) =) JA = ZEIIZZ z{ |3
2=0
where

o [E isthe expectation operator
o z; isthetruth

o z% is the posterior estimate
1

> KF solves the minimization problem sequentially



Kalman Filter (KF)

o For linear Gaussian systems, the Bayesian filter reduces
to the KF which updates the mean and the covariance of
the pdf as follows

g

b a
Xi = Mz‘,i—l Xi 1

Prediction Step |

Pl=M,;, P M +Q.

ll "x! =x; + K (yi — Hix))
Analysis Step | 4 P? = P’ — K,/H,P? .
Ki = PIH/ (HPIH! +R)




H., Optimality

0 First recognize that the sources of uncertainties are in the
initial conditions, the model and the observations, so the
“total energy of uncertainties” at a given time is

s — X apys + als + [Vills

> Ag, Q;, R, are “uncertainty weight matrices”, and they
are user-defined by design

> Per analogy to Kalman filtering, we consider them as the
errors covariance matrices.



H., Optimality

o H. requires that the “energy” in estimation error to be less
than the total energy of uncertainties in the system

1
< — (It = Xapys + il + vill3 )
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» S, is another user-defined weight matrix

0 To solve this problem, consider the cost function

2
S;
JH.F

S T = Xy + TwilE + vill%

|z; — z7

: 1
we require J7F ~

Vi



H., Optimality

o Optimality of H,, is achieved when 1 /~* is “minimax point”

1
— = —=1inf sup Jff

%k
i Vi 27 X,04,V;

i.e. the minimum cost in the worst possible case

0 Because it is difficult to evaluate %?" ~we choose Y
1 1

’Y_@' Vi
This guarantees existence of an H_, solution (Simon, 2006)

N ! N N N
S 1z — 23, < mex{ L} (Z i — Xy + 3l + 3 il )
i=0 N =0 | =0 ' =0 a
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The H_, Filter (HF)

o H., filter updates a prior estimate to its posterior based
on the minimax criterion as follows (Simon 2006)

pum—

b a
X, = Mii1x5_

A =M1 Af M+ Qi

l l ] % = Xf + G; (y.?; - 'Hzxi’)

Analysis Step | 7(AY) ' = (AY)) ! + (H?{)T(R@’)l?{i

G = A?H?(RE)_l ;

Prediction Step |

subject to
(A7) = (A + (H)' (R) ™" H; — %L SL; > 0.
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HF vs. KF

|z; — z¢||§, is bounded above by some finite value in HF.
This is not necessarily true for KF!

If v, = 0 then the HF reduces to KF
The choice of L, affects the estimate of HF, but not KF

HF is more conservative; it tends to make its analysis
uncertainties larger than that of the KF

(A = (29) 7" =L SiL; < ()7

KF is expected to perform better if system statistics are
well known, but HF should be more “robust”

12



EnHF: A Hybrid HF - EnKF

0 HF can be based on any EnKF, stochastic or deterministic

o Theidea is to first use an EnKF to compute the
uncertainty matrix 3¢ satisfying

(=)= (A + (H) (Ry) ™,
then “inflate” 3¢ to compute
(A} =(27) =L SL; =0

with an appropriate/robust choice of ~;
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HF and Inflation in EnKFs

a By choosing different forms of ~,L S,L; in the EnHF update
formula of the uncertainty matrix

(A} = (A) ™ + (Ha)' (R) T H,; — %Ly SiL; > 0
we can derive any EnKF with covariance inflation
o Case I-BG: If 4,L!S,L; = ¢(A")~', we obtain the SEIK inflation
in Pham et al. (1998)
(AN =1 =AD"+ (H) (R)"H,

o Case I-ANA: If 4, L'S,.L;, = ¢ (2%)~! , we derive the SR-EnKF
inflation in Whitacker and Hamill (2002)

~

Af=(1-¢) %
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HF with Modes Inflation

o Case I-MTX: If L'S,L, =1, ,then
(A?)_l - (ﬁ:?)_l o f)/i:[mx

In this case, using an SVD on the EnKF analysis covariance
matrix before inflation

>0 = E‘DY(EY)T , where D? = diag(ci1, -+ ,0im, )
Then after inflation,

Af — E?A?(E?)T, with A¢ = diag (1

0i,5

)r O§C<1

—C0;;/0i1

> Very similar to the ETKF inflation of Ott et al. (2004) who
augmented the eigenvalues by a constant
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A Simple Example

o Consider the model
Tid = 1+ 0.5z; —01x] 4+ fzs kb, b, d) +u;,

0 Forecast model |

Livrl — 1+ 05517? -+ U;

o Observation model WWMWMN (MWW W\W WWW WM?W‘NW

Y, — I ik
A time series with
with o, ~ N(u, : 0,1) h=10
v; ~ N(v; : 0,1) k = 200, 400, 600 and 800
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A Simple Example — HF |I-BG

Assimilation results of I-BG HF:

8 ‘ ‘
----- KF with h =10
6 ——HF (-BG) withh=10andc=0.5 |
L
24
'
2
0 = N ! \ : I | |
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A Simple Example — HF |-ANA

e HF I-ANA and I-MTX are equivalent in 1D

Time step

8 | l
————— KF with h = 10
6 —— HF (I-ANA,-MTX) withh=10andc=0.5 |
LI
0’) 1
4 I :
E I s :l"- :L‘.
2 | X | X -
0 200 400 600 800 1000
Time step
20 | l
————— KF with h = 30
— HF (I-ANA,-MTX) with h=30and c= 0.5
oL L L L
0 | I} J|“i | : | I: bt
0 200 400 600 800 1000
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Application to Storm Surge Forecasting

Interest of forecasting storm surge has
dramatically increased since the devastating
2005 hurricane season

Advanced Circulation (ADCIRC) discretizes
shallow water equations using FEM on
unstructured meshes

A case study Hurricane lke, which made landfall
along the upper Texas coast on Sep. 13 2008

Observations of water levels are taken from a
high-resolution hindcast of lke

Forecast model uses a low-resolution
configuration with different winds and ICs




Experiments Design

e Assimilation experiments setup
— Time step: 10 s

— Grid of 8006 nodes for U, V, Eta and
14,269 elements

aok .- .

— 5 tidal constituents:
M2,S2, K1, 01, P1

— Measurement Stations: 350

— Analysis: Every 2 hours -
— Assimilations steps: 48 {
— HF based on SEIK l ”mmm

— Ensemble size: 10 EEEREEEER P



Inflation factor A Cloastal rms-error Rms-error > 3m

ND 1.92 1.91

1.0 1.68 1.65

i T 8 1.59 1.62

1.2 1.45 1.46

1.4 1.8 1.61

g % 5 1.62 1.65

1.6 1.38 1.42

1.7 1.4°7 1.1

2 1. 52 1.54
Factor o Coastal roms-error Rms-error = 3m
NI 1.92 1.91
0.1 1.43 1.38
0.2 1.40 1.42
0.3 1.47 1..50
0.4 1.34 1.36
0.5 1.30 1.33
(.6 1. ETF 1.10
0.7 0.50 0.87
0.8 1.35 1.385

Average rms-errors of the maximum water level forecasts in lke
simulations using 1) SEIK and 2) HF-SEIK with different inflation
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Discussion

o H_ provides a unified framework for inflation in EnKFs

o H., is more robust for systems with fast varying regimes

0 Develop “optimal” adaptive inflation schemes based on
HF: one still need to add an optimal criterion to define
“optimal inflation”

o Include parameters and inputs, such as bathymetry and
winds, in the estimation process

0 Assimilation with coupled wave - storm Surge models
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Intro: Assimilation

o Data assimilation combines numerical models and data
to compute the best possible estimate of the state of a

dynamical system

o All assimilation schemes have been derived from the
Bayesian filtering theory, determine pdf of the state
given available data

Uncertainty Quantification + Uncertainty Reduction

Forecast: propagate pdf Analysis: correct prior pdf
with the model in time with new data
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HF and Inflation in EnKFs

0 Inflation is becoming a standard tool in EnKFs

Hamill et al. (2011): Since the early implementations of the EnKF,
several now-standard modifications are commonly con-
sidered to be essential in spatially distributed systems;
the first is some form of “‘localization” of covariances
(Houtekamer and Mitchell 2001; Hamill et al. 2001).
Another common technique for the stabilization of the
EnKF is the enlargement of the prior through *‘covariance
inflation” (Anderson and Anderson 1999)

o No rigorous framework for inflation yet!

Talagrand on Hoteit’s thesis (2001):

My only critic about this thesis is related to the use of forgetting
factor. I do not see any theoretical reason to use it!
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Why Using H_.?

0o Better deal with large dimensional geophysical systems
with intermittent and fast varying regimes which are

subject to

v Important model uncertainties

v Poor priors

0 Provide a theoretical framework for different inflations
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Intro: Robust H_, Filtering

o Focus on the robustness of the estimate in the
sense that it has better tolerance to possible
uncertainties

o Do not assume the complete knowledge of the
statistics of the system in assimilation; recognizing
that some uncertainties cannot be avoided

0 Replace the optimal estimate criterion by a robust
criterion, e.g. H._ which is based on a minimax
criterion
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HF and Inflation in EnKFs

0 Case l-OBS: If ~ 17S.L; = ¢(H;)T(R;)"'#,; » Which leads to

(A= (AT + (1= o) (H)" (Ri) 'K,
or, in other words, to the inflation of the observation covariance.

0 In the EnKF, the observation covariance is generally under-
sampled because of the limited ensemble size. This means

l—c>1 = 7 <0

implying more confidence in the prior, which could explain
some underperformances of the EnKF compared to SR-EnKFs.

> The EnKF could benefit from the inflation of the observation

covariance
31
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