Ensemble-Based Characterization of Uncertain Features Dennis McLaughlin, Rafal Wojcik

Hydrology TRMM TMI/PR satellite rainfall

Geophysics – Seismic

Neuroscience -- MRI

Medicine -- CAT

Material testing Laser scanner

Problem: Characterize complex geometric features that are difficult to observe.

Bayesian estimation theory provides a general framework for solving the feature characterization problem:

- **Possible features: Prior probability** conveys distinctive structure and uncertainty
- Likelihood function: Conveys effect of measurement errors
- Probable features: Identified by posterior probability derived from prior and likelihood

$$P_{\vec{X}|\vec{Z}}(\vec{X}|\vec{Z}) = cP_{\vec{Z}|\vec{X}}(\vec{X}|\vec{Z})P_{\vec{X}}(\vec{X})$$

 $\vec{X}, \vec{Z} =$ Actual and measured images

Non-parametric approach:

Use discrete prior and posterior probabilities described by finite **ensembles** of possible features.

Quantify Images for Discrete Computation

"Natural" description: Vector of individual **pixel values** (e.g. 0 or 1)

- General

- Inefficient (high redundancy)
- High-dimensional

Alternative description:

Vector of a few distinctive **attributes** (which ones?)

Our approach:

- Start with **pixel-based** prior and measurement images/vectors
- Transform all images into **attribute** vectors
- Perform Bayesian computations in attribute space
- Assign updated probabilities to **pixel-based** prior images

Types of Measurements Required

Historical measurements (archived):

- High-quality measurements (ground truth)
 May be expensive or only available at limited times/locations.
 Use some of these to construct prior replicate training image
- Low-quality measurements More readily available but are indirect, noisy, coarser resolution, etc.

Current measurements (real time):

- Observations of image of current interest, possibly with different instruments
- Quality is similar to low quality measurements in historical archive

Errors in current measurements are revealed by comparisons between high and low-quality historical observations.

Use **multi-point** methods to generate realistic prior replicates from **training image**

Compile Measurement Error Informa

Errors in current meas. are feature-depend

Identify error properties by comparing high & low quality historical meas:

Differences depend on true feature, do not have simple stationary structure

Data-driven Method for Defining Attributes

- Compute "distances" between all **pairs** of points in pixel space.
- Randomly distribute points in **attribute space** (one for each image)
- Compute "distances" between all **pairs** of points in attribute space.
- Iteratively adjust attribute point locations so pair distances in attribute space match pair distances in pixel space (as much as possible)

Multi-dimensional scaling: Defines mapping from pixel to attribute values

Select Image Similarity Measures – "Distances"

How do we measure "distance" between 2 images ?

Pixel space: Use "Simple Matching Coefficient" (SMC):

Attribute space: *YDist* is Euclidean distance between attribute vectors

Map All Images to Attribute Space

Use distance-preserving (MDS) technique to map 16 X 16 (256) pixel images to 2 attributes

Attribute 1

Quality of Mapping from Pixels to Attributes

An ideal pixel to attribute mapping would give a narrow one-to-one-curve:

Construct Likelihood Function in Attribute Space

Assume errors in meas. attributes are additive. Fit a continuous bivariate distribution (grey scale Evaluate likelihood at current meas –each prior replicate

Attribute 1

Some Issues for Further Consideration

- How many attributes? Tradeoffs between number of attributes vs. ensemble size vs. computational effort ?
- Go beyond binary images include intensity variations within features. Consider implications for measurement error characterization.
- Try other distance metrics for both pixel and attribute spaces
- Improve replicate generation account for dynamics & temporal correlation (i.e. prior comes from a forecast)
- Test measurement error analysis and likelihood generation with real low quality historical meas.
- Measurement error additivity in attribute space?
- Test approach with Markov Chain Monte Carlo (MCMC) version of Bayesian conditioning

Common aspects over many applications:

- Features are **heterogeneous**, **localized**, **often disconnected**, with complex but **distinctive structure**.
- Features are **uncertain**
- Higher-quality (ground truth) observations are only available at limited times/locations (or may be more expensive)
- Lower-quality measurements are more readily available but are indirect, noisy, coarser resolution, etc.
- Measurement errors are revealed by comparisons between high and low-quality observations, when and where both are available.

Visual Representation of Alternative Image Spaces

In both spaces, define similarity ("distance") between any 2 images (e.g. a and b)

Efficient Bayesian Characterization

A hybrid approach :

In the high-dimensional **pixel-space**:

- Generate an ensemble of equally likely prior images
- Compile sets of high and low-quality **historical** measurements that characterize measurement error.
- Obtain a low-quality **current measurement** of the image of interest

Associate each prior replicate or measurement in the pixel space with a corresponding point in the attribute space.

In the low-dimensional attribute space:

- Construct a likelihood function from the historical measurement attributes
- Evaluate the likelihood of each prior replicate, given the current measurement (using attribute values)
- Use Bayes Theorem to assign updated posterior probabilities to all the prior replicates

The updated probabilities identify the "most likely" prior replicates in either space.

Generate Realistic Prior Replicates

Prior replicates should be:

- **Realistic** (i.e. they should "look like" true features, as revealed by scattered high-quality measurements)
- Localized in space (non-stationary).
- Sufficiently variable to adequately reflect **uncertainty** about image of interest.

Generating prior replicates:

- Derive stationary unconditional replicates from training image(s) obtained from high quality historical observations (use multi-point geostatistics).
- Condition these replicates on scattered low quality current measurement values the number of conditioning values should be varied.

This yields a set of **nonstationary conditional** replicates.

• Construct the **prior ensemble** from the conditional replicates

Likelihood Function – Conditioning

Likelihood values are used to determine importance sampling weights.

Most likely samples are those closest to the likelihood function peak.